5 results on '"Sutter, Andreas"'
Search Results
2. The baculum affects paternity success of first but not second males in house mouse sperm competition
- Author
-
Winkler, Lennart; https://orcid.org/0000-0003-3597-6540, Ramm, Steven A; https://orcid.org/0000-0001-7786-7364, Lindholm, Anna K; https://orcid.org/0000-0001-8460-9769, Sutter, Andreas; https://orcid.org/0000-0002-7764-3456, Winkler, Lennart; https://orcid.org/0000-0003-3597-6540, Ramm, Steven A; https://orcid.org/0000-0001-7786-7364, Lindholm, Anna K; https://orcid.org/0000-0001-8460-9769, and Sutter, Andreas; https://orcid.org/0000-0002-7764-3456
- Abstract
The vast variation observed in genital morphology is a longstanding puzzle in evolutionary biology. Studies showing that the morphology of the mammalian baculum (penis bone) can covary with a male’s paternity success indicate a potential impact of baculum morphology on male fitness, likely through influencing sperm competition outcomes. We therefore measured the size (measurements of length and width) and shape (geometric morphometric measurements) of the bacula of male house mice used in previously published sperm competition experiments, in which two males mated successively with the same female in staged matings. This enabled us to correlate baculum morphology with sperm competition success, incorporating potential explanatory variables related to copulatory plugs, male mating behavior and a selfish genetic element that influences sperm motility. We found that a wider baculum shaft increased a male’s paternity share when mating first, but not when mating second with a multiply-mating female. Geometric morphometric shape measurements were not clearly associated with fertilization success for either male. We found limited evidence that the effect of baculum morphology on male fertilization success was altered by experimental removal of the copulatory plug. Furthermore, neither genetic differences in sperm motility, nor covariation with male mating behavior mediated the effect of baculum morphology on male fertilization success. Taken together with previous findings, the mating-order effects we found here suggest that baculum-mediated stimulation by the first male might be particularly important for fertilization.
- Published
- 2021
3. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics?
- Author
-
Sutter, Andreas, Lindholm, Anna K, Sutter, Andreas, and Lindholm, Anna K
- Abstract
Background With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Here, we explore this possibility in house mice. Natural populations frequently harbour a well-characterised male driver (t haplotype), which is transmitted to 90 % of heterozygous (+/t) males’ offspring. Previous research demonstrated strong detrimental effects on sperm competitiveness, and suggested that +/t males are particularly disadvantaged against wild type males when first-to-mate. Low paternity success in the first-to-mate role is expected to favour male adaptations that decrease the risk of sperm competition by preventing female remating. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Here, we seek confirmation that +/t males are generally disadvantaged when first-to-mate and address whether males of different genotypes differ in reproductive tactics (copulatory and morphological) to maximise individual or driver fitness. Finally, we attempt to explain the mechanistic basis for alternative sperm precedence patterns in this species. Results We confirmed that +/t males are weak sperm competitors when first to mate. When two +/t males competed, the second-to-mate was more successful, which contrasts with first male sperm precedence when wild type males competed. However, we found no differences between male genotypes in reproductive behaviour or morphology that were consistent with alternative reproductive tactics. Sperm of +/+ and +/t males differed wi
- Published
- 2016
4. A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-? and meta-iodobenzylguanidine.
- Author
-
Höpfner, Michael, Sutter, Andreas P., Huether, Alexander, Ahnert-Hilger, Gudrun, and Scherübl, Hans
- Subjects
- *
TUMOR suppressor genes , *INTERFERONS , *TUMOR growth , *NEUROENDOCRINE tumors , *GASTROINTESTINAL tumors - Abstract
Background: Therapeutic options to effectively inhibit growth and spread of neuroendocrine gastrointestinal tumors are still limited. As both meta-iodobenzylguanidine (MIBG) and interferon-γ (IFNγ) cause antineoplastic effects in neuroendocrine gastrointestinal tumor cells, we investigated the antiproliferative effects of the combination of IFNγ and non-radiolabeled MIBG in neuroendocrine gut STC-1 and pancreatic carcinoid BON tumor cells. Methods and results: IFNγ receptors were expressed in both models. IFNγ dose- and time-dependently inhibited the growth of both STC-1 and of BON tumor cells with IC50-values of 95 ± 15 U/ml and 135 ± 10 U/ml, respectively. Above 10 U/ml IFNγ induced apoptosis-specific caspase-3 activity in a time-dependent manner in either cell line and caused a dose-dependent arrest in the S-phase of the cell cycle. Furthermore, IFNγ induced cytotoxic effects in NE tumor cells. The NE tumor-targeted drug MIBG is selectively taken up via norepinephrine transporters, thereby specifically inhibiting growth in NE tumor cells. Intriguingly, IFNγ treatment induced an upregulation of norepinephrine transporter expression in neuroendocrine tumors cells, as determined by semiquantitative RT-PCR. Co-application of sub-IC50 concentrations of IFNγ and MIBG led to additive growth inhibitory effects, which were mainly due to increased cytotoxicity and S-phase arrest of the cell cycle. Conclusion: Our data show that IFNγ exerts antiproliferative effects on neuroendocrine gastrointestinal tumor cells by inducing cell cycle arrest, apoptosis and cytotoxicity. The combination of IFNγ with the NE tumor-targeted agent MIBG leads to effective growth control at reduced doses of either drug. Thus, the administration of IFNγ alone and more so, in combination with MIBG, is a promising novel approach in the treatment of neuroendocrine gastrointestinal tumors. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
5. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics?
- Author
-
Sutter A and Lindholm AK
- Subjects
- Animals, Female, Genitalia, Male anatomy & histology, Genotype, Haplotypes, Male, Mice, Reproduction genetics, Spermatozoa cytology, Meiosis, Sexual Behavior, Animal physiology, Spermatozoa physiology
- Abstract
Background: With female multiple mating (polyandry), male-male competition extends to after copulation (sperm competition). Males respond to this selective pressure through physiological, morphological and behavioural adaptations. Sperm competitiveness is commonly decreased in heterozygote carriers of male meiotic drivers, selfish genetic elements that manipulate the production of gametes in males. This might give carriers an evolutionary incentive to reduce the risk of sperm competition. Here, we explore this possibility in house mice. Natural populations frequently harbour a well-characterised male driver (t haplotype), which is transmitted to 90 % of heterozygous (+/t) males' offspring. Previous research demonstrated strong detrimental effects on sperm competitiveness, and suggested that +/t males are particularly disadvantaged against wild type males when first-to-mate. Low paternity success in the first-to-mate role is expected to favour male adaptations that decrease the risk of sperm competition by preventing female remating. Genotype-specific paternity patterns (sperm precedence) could lead to genetically determined alternative reproductive tactics that can spread through gene level selection. Here, we seek confirmation that +/t males are generally disadvantaged when first-to-mate and address whether males of different genotypes differ in reproductive tactics (copulatory and morphological) to maximise individual or driver fitness. Finally, we attempt to explain the mechanistic basis for alternative sperm precedence patterns in this species., Results: We confirmed that +/t males are weak sperm competitors when first to mate. When two +/t males competed, the second-to-mate was more successful, which contrasts with first male sperm precedence when wild type males competed. However, we found no differences between male genotypes in reproductive behaviour or morphology that were consistent with alternative reproductive tactics. Sperm of +/+ and +/t males differed with respect to in vitro sperm features. Premature hypermotility in +/t males' sperm can potentially explain why +/t males are very weak sperm competitors when first-to-mate., Conclusions: Our results demonstrate that meiotic drivers can have strong effects on sperm precedence patterns, and may provide a heritable basis for alternative reproductive tactics motivated by reduced sperm competitiveness. We discuss how experimental and evolutionary constraints may help explain why male genotypes did not show the predicted differences.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.