1. TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression.
- Author
-
Wang, Yuebin, Yang, Huike, Su, Xian, Cao, Anqiang, Chen, Feng, Chen, Peng, Yan, Fangtao, and Hu, Huirong
- Subjects
- *
FIBROBLASTS , *ASTHMA , *LUNGS , *WESTERN immunoblotting , *CALCIUM-binding proteins , *MYOFIBROBLASTS , *RESPIRATORY diseases , *GENETIC overexpression - Abstract
Background: Asthma is a common chronic respiratory disease that influences 300 million people all over the world. However, the pathogenesis of asthma has not been fully elucidated. It has been reported that transforming growth factor-β (TGF-β) can activate myofibroblasts. Moreover, the fibroblast to myofibroblast transformation (FMT) can be triggered by TGF-β, which is a major mediator of subepithelial fibrosis. Secreted modular calcium-binding protein 2 (SMOC2) is a member of cysteine (SPARC) family and is involved in the progression of multiple diseases. However, its role in asthma remains poorly understood. RT-qPCR evaluated the expression of SMOC2. Bromodeoxyuridine assay and wound-healing assay detected the proliferation and migration of lung fibroblasts, respectively. IF staining was performed to assess the expression of α-smooth muscle actin (α-SMA). Western blot analysis detected the levels of proteins. Flow cytometry was utilized for determination of the number of myofibroblasts. Results: We found the expression of SMOC2 was upregulated by the treatment of TGF-β1 in lung fibroblasts. In addition, SMOC2 promoted the proliferation and migration of lung fibroblasts. More importantly, SMOC2 accelerated FMT of lung fibroblasts. Furthermore, SMOC2 was verified to control the activation of AKT and ERK. Rescue assays showed that the inhibition of AKT and ERK pathway reversed the promoting effect of SMOC2 overexpression on proliferation, migration and FMT in lung fibroblasts. Conclusions: This work demonstrated that SMOC2 modulated TGF-β1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF