5 results on '"Rogers, Matthew B."'
Search Results
2. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria.
- Author
-
Rogers, Matthew B., Patron, Nicola J., and Keeling, Patrick J.
- Subjects
- *
CYANOBACTERIA , *PLASTIDS , *PROTEINS , *GENES , *PROKARYOTES - Abstract
Background: Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results: Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two nonhomologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion: A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
3. A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer.
- Author
-
Rogers MB, Watkins RF, Harper JT, Durnford DG, Gray MW, and Keeling PJ
- Subjects
- Animals, Bacteria enzymology, Bacteria genetics, Bacterial Proteins genetics, DNA genetics, Expressed Sequence Tags, Genes, Bacterial, Molecular Sequence Data, Species Specificity, Carbohydrate Epimerases genetics, Conserved Sequence genetics, Eukaryotic Cells enzymology, Evolution, Molecular, Gene Transfer, Horizontal, Genes, Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+) genetics, Glyceraldehyde-3-Phosphate Dehydrogenase (NADP+)(Phosphorylating) genetics, Transketolase genetics
- Abstract
Background: Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage., Results: Here we show that several apparently simple cases of lateral transfer are actually more complex than they originally appeared: in these instances we find that two or more distantly related eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically, we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of these enzymes includes a strongly-supported clade consisting of several eukaryotes that are distantly related at the organismal level, but whose enzymes are apparently all derived from the same lateral transfer. With less sampling any one of these examples would appear to be a simple case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot be so simple. The distributions of these genes may represent ancient paralogy events or genes that have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them. They may alternatively have been transferred laterally from a bacterium to a single eukaryotic lineage and subsequently transferred between distantly related eukaryotes., Conclusion: Determining how complex the distribution of a transferred gene is depends on the sampling available. These results show that seemingly simple cases may be revealed to be more complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may have a punctate distribution.
- Published
- 2007
- Full Text
- View/download PDF
4. Complex distribution of EFL and EF-1alpha proteins in the green algal lineage.
- Author
-
Noble GP, Rogers MB, and Keeling PJ
- Subjects
- Molecular Sequence Data, Phylogeny, Algal Proteins genetics, Chlorophyta genetics, Evolution, Molecular, GTP Phosphohydrolase-Linked Elongation Factors genetics, Peptide Elongation Factor 1 genetics
- Abstract
Background: EFL (or elongation factor-like) is a member of the translation superfamily of GTPase proteins. It is restricted to eukaryotes, where it is found in a punctate distribution that is almost mutually exclusive with elongation factor-1 alpha (EF-1alpha). EF-1alpha is a core translation factor previously thought to be essential in eukaryotes, so its relationship to EFL has prompted the suggestion that EFL has spread by horizontal or lateral gene transfer (HGT or LGT) and replaced EF-1alpha multiple times. Among green algae, trebouxiophyceans and chlorophyceans have EFL, but the ulvophycean Acetabularia and the sister group to green algae, land plants, have EF-1alpha. This distribution singles out green algae as a particularly promising group to understand the origin of EFL and the effects of its presence on EF-1alpha., Results: We have sampled all major lineages of green algae for both EFL and EF-1alpha. EFL is unexpectedly broad in its distribution, being found in all green algal lineages (chlorophyceans, trebouxiophyceans, ulvophyceans, prasinophyceans, and mesostigmatophyceans), except charophyceans and the genus Acetabularia. The presence of EFL in the genus Mesostigma and EF-1alpha in Acetabularia are of particular interest, since the opposite is true of all their closest relatives. The phylogeny of EFL is poorly resolved, but the Acetabularia EF-1alpha is clearly related to homologues from land plants and charophyceans, demonstrating that EF-1alpha was present in the common ancestor of the green lineage., Conclusion: The distribution of EFL and EF-1alpha in the green lineage is not consistent with the phylogeny of the organisms, indicating a complex history of both genes. Overall, we suggest that after the introduction of EFL (in the ancestor of green algae or earlier), both genes co-existed in green algal genomes for some time before one or the other was lost on multiple occasions.
- Published
- 2007
- Full Text
- View/download PDF
5. Comparative rates of evolution in endosymbiotic nuclear genomes.
- Author
-
Patron NJ, Rogers MB, and Keeling PJ
- Subjects
- Bacterial Proteins genetics, Phylogeny, Plant Proteins genetics, Plastids genetics, Proteobacteria genetics, Cell Nucleus genetics, Cryptophyta cytology, Cryptophyta genetics, Eukaryotic Cells metabolism, Evolution, Molecular, Genome genetics, Symbiosis genetics
- Abstract
Background: The nucleomorphs associated with secondary plastids of cryptomonads and chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes. Although not as widespread as their prokaryotic equivalents in mitochondria and plastids, nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in several aspects, not least in that they encode proteins that target to the plastid, and so function in a different compartment from that in which they are encoded., Results: Here, we test whether the phylogenetically distinct nucleomorph genomes of the cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced similar evolutionary pressures during their transformation to reduced organelles. We compared the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which encode proteins that function in the same cellular compartment, the plastid, and are thus subject to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs within cryptomonads by comparing G. theta and Rhodomonas salina., Conclusion: Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate than other genomes within the same cell, regardless of the compartment where the gene product functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different, despite the similarities between the structures of their genomes.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.