4 results on '"Morshedloo MR"'
Search Results
2. Phytochemical profile and antifungal activity of essential oils obtained from different Mentha longifolia L. accessions growing wild in Iran and Iraq.
- Author
-
Mustafa KH, Khorshidi J, Vafaee Y, Rastegar A, Morshedloo MR, and Hossaini S
- Subjects
- Iran, Iraq, Plant Oils pharmacology, Plant Oils chemistry, Fusarium drug effects, Oils, Volatile pharmacology, Oils, Volatile chemistry, Antifungal Agents pharmacology, Mentha chemistry, Phytochemicals chemistry, Phytochemicals pharmacology
- Abstract
Background: Mentha longifolia L. is a perennial plant belonging to the Lamiaceae family that has a wide distribution in the world. M. longifolia has many applications in the food and pharmaceutical industries due to its terpenoid and phenolic compounds. The phytochemical profile and biological activity of plants are affected by their genetics and habitat conditions. In the present study, the content, constituents and antifungal activity of the essential oil extracted from 20 accessions of M. longifolia collected from different regions of Iran and Iraq countries were evaluated., Results: The essential oil content of the accessions varied between 1.54 ± 0.09% (in the Divandarreh accession) to 5.49 ± 0.12% (in the Khabat accession). Twenty-seven compounds were identified in the essential oils of the studied accessions, which accounted for 85.5-99.61% of the essential oil. The type and amount of dominant compounds in the essential oil were different depending on the accession. Cluster analysis of accessions based on essential oil compounds grouped them into three clusters. The first cluster included Baziyan, Boukan, Sarouchavah, Taghtagh, Darbandikhan, Isiveh and Harir. The second cluster included Khabat, Kounamasi, Soni and Mahabad, and other accessions were included in the third cluster. Significant correlations were observed between the essential oil content and components with the climatic and soil conditions of the habitats. The M. longifolia essential oil indicated antifungal activity against Fusarium solani in both methods used. In all studied accessions, the fumigation method compared to the contact method was more able to control mycelia growth. In both methods, the inhibition percentage of essential oil on mycelia growth increased with an increase in essential oil concentration. Significant correlations were found between the essential oil components and the inhibition percentage of mycelium growth., Conclusion: The studied M. longifolia accessions showed significant differences in terms of the essential oil content and components. Differences in phytochemical profile of accessions can be due to their genetic or habitat conditions. The distance of the accessions in the cluster was not in accordance with their geographical distance, which indicates the more important role of genetic factors compared to habitat conditions in separating accessions. The antifungal activity of essential oils was strongly influenced by the essential oil quality and concentration, as well as the application method. Determining and introducing the elite accession in this study can be different depending on the breeder's aims, such as essential oil content, desired chemical composition, or antifungal activity., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Intraspecific divergence in essential oil content, composition and genes expression patterns of monoterpene synthesis in Origanum vulgare subsp. vulgare and subsp. gracile under salinity stress.
- Author
-
Azimzadeh Z, Hassani A, Mandoulakani BA, Sepehr E, and Morshedloo MR
- Subjects
- Thymol, Sodium Chloride, Monoterpenes metabolism, Salt Stress genetics, Oils, Volatile metabolism, Origanum genetics, Origanum metabolism
- Abstract
Background: Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile)., Results: Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot
-1 ) and lowest (0.06 mL pot-1 ) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile., Conclusions: The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes., (© 2023. BioMed Central Ltd., part of Springer Nature.)- Published
- 2023
- Full Text
- View/download PDF
4. Modeling and optimizing concentration of exogenous application of γ-aminobutyric acid on NaCl-stressed pineapple mint (Mentha suaveolens) using response surface methodology: an investigation into secondary metabolites and physiological parameters.
- Author
-
Ahmadi H, Farhadi H, Morshedloo MR, and Maggi F
- Subjects
- Sodium Chloride pharmacology, Sodium Chloride metabolism, Oxides metabolism, Ananas, Mentha chemistry, Mentha metabolism, Oils, Volatile metabolism, Plants, Medicinal
- Abstract
Salinity, a severe worldwide issue, compromises the economic production of medicinal plants including mints and causes drug-yield decline. γ-Aminobutyric acid (GABA) is a tolerance-inducing signaling bio-molecule in various plant physiological processes. Pineapple mint (Mentha suaveolens Ehrh.) is a valuable medicinal herb with an exhilarating scent of citrus fruit. Piperitenone oxide is the major bioactive constituent of its essential oil, having significant demand by pharmaceutical industries. Nonetheless, modeling and optimizing the effective concentration of GABA remain within twin foci of interest. Therefore, a two factor-five level (NaCl 0-150 mM and GABA 0-2.4 mM) central composite design was conducted to model and optimize drug yield and physiological responses of M. suaveolens. Based on the design of experiments (DoE) approach, different linear, quadratic, cubic, and quartic models were assigned to the response variables. Change trends of shoot and root dry weights followed a simple linear model, whereas sophisticated models (i.e., multiple polynomial regression) were fitted to the other traits. NaCl stress inevitably reduced root and shoot dry weight, piperitenone oxide content, relative water content, pigments content, and maximum quantum yield of PSII. However, content of malondialdehyde (MDA) and total flavonoid, and DPPH radical scavenging activity were increased under salinity. Under severe NaCl stress (150 mM), the essential oil content (0.53%) was increased three times in comparison with control (0.18%). Optimization analysis demonstrated that the highest amount of essential oil (0.6%) and piperitenone oxide (81%) as a drug yield-determining component would be achievable by application of 0.1-0.2 mM GABA under 100 mM NaCl. The highest dry weight of root and shoot was predicted to be achieved at 2.4 mM GABA. Overall, extremely severe NaCl stress (i.e., more than 100 mM) in which a sharp drop in yield components value was observed seemed to be out of M. suaveolens salinity tolerance range. Hence, it is rationale to compensate the decrease of drug yield by foliar application of a dilute GABA solution (i.e., 0.1-0.2 mM) under 100 mM NaCl stress or lower levels., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.