1. Cytoplasmic PPARγ is a marker of poor prognosis in patients with Cox-1 negative primary breast cancers.
- Author
-
Shao W, Kuhn C, Mayr D, Ditsch N, Kailuwait M, Wolf V, Harbeck N, Mahner S, Jeschke U, Cavaillès V, and Sixou S
- Subjects
- Biomarkers, Tumor, Cytoplasm, Humans, Prognosis, Receptor, ErbB-2, Breast Neoplasms, PPAR gamma
- Abstract
Background: The aim of this study was to investigate the expression of the nuclear receptor PPARγ, together with that of the cyclooxygenases Cox-1 and Cox-2, in breast cancer (BC) tissues and to correlate the data with several clinicobiological parameters including patient survival., Methods: In a well characterized cohort of 308 primary BC, PPARγ, Cox-1 and Cox-2 cytoplasmic and nuclear expression were evaluated by immunohistochemistry. Correlations with clinicopathological and aggressiveness features were analyzed, as well as survival using Kaplan-Meier analysis., Results: PPARγ was expressed in almost 58% of the samples with a predominant cytoplasmic location. Cox-1 and Cox-2 were exclusively cytoplasmic. Cytoplasmic PPARγ was inversely correlated with nuclear PPARγ and ER expression, but positively with Cox-1, Cox-2, and other high-risk markers of BC, e.g. HER2, CD133, and N-cadherin. Overall survival analysis demonstrated that cytoplasmic PPARγ had a strong correlation with poor survival in the whole cohort, and even stronger in the subgroup of patients with no Cox-1 expression where cytoplasmic PPARγ expression appeared as an independent marker of poor prognosis. In support of this cross-talk between PPARγ and Cox-1, we found that Cox-1 became a marker of good prognosis only when cytoplasmic PPARγ was expressed at high levels., Conclusion: Altogether, these data suggest that the relative expression of cytoplasmic PPARγ and Cox-1 may play an important role in oncogenesis and could be defined as a potential prognosis marker to identify specific high risk BC subgroups.
- Published
- 2020
- Full Text
- View/download PDF