1. Adult and iPS-derived non-parenchymal cells regulate liver organoid development through differential modulation of Wnt and TGF-β.
- Author
-
Goulart E, de Caires-Junior LC, Telles-Silva KA, Araujo BHS, Kobayashi GS, Musso CM, Assoni AF, Oliveira D, Caldini E, Gerstenhaber JA, Raia S, Lelkes PI, and Zatz M
- Subjects
- Adult, Cell Differentiation, Endothelial Cells cytology, Endothelial Cells metabolism, Female, Humans, Liver metabolism, Male, Organoids metabolism, Parenchymal Tissue growth & development, Parenchymal Tissue metabolism, Proteome analysis, Young Adult, Gene Expression Regulation, Induced Pluripotent Stem Cells cytology, Liver growth & development, Organoids growth & development, Transforming Growth Factor beta metabolism, Wnt Proteins metabolism
- Abstract
Background: Liver organoid technology holds great promises to be used in large-scale population-based drug screening and in future regenerative medicine strategies. Recently, some studies reported robust protocols for generating isogenic liver organoids using liver parenchymal and non-parenchymal cells derived from induced pluripotent stem cells (iPS) or using isogenic adult primary non-parenchymal cells. However, the use of whole iPS-derived cells could represent great challenges for a translational perspective., Methods: Here, we evaluated the influence of isogenic versus heterogenic non-parenchymal cells, using iPS-derived or adult primary cell lines, in the liver organoid development. We tested four groups comprised of all different combinations of non-parenchymal cells for the liver functionality in vitro. Gene expression and protein secretion of important hepatic function markers were evaluated. Additionally, liver development-associated signaling pathways were tested. Finally, organoid label-free proteomic analysis and non-parenchymal cell secretome were performed in all groups at day 12., Results: We show that liver organoids generated using primary mesenchymal stromal cells and iPS-derived endothelial cells expressed and produced significantly more albumin and showed increased expression of CYP1A1, CYP1A2, and TDO2 while presented reduced TGF-β and Wnt signaling activity. Proteomics analysis revealed that major shifts in protein expression induced by this specific combination of non-parenchymal cells are related to integrin profile and TGF-β/Wnt signaling activity., Conclusion: Aiming the translation of this technology bench-to-bedside, this work highlights the role of important developmental pathways that are modulated by non-parenchymal cells enhancing the liver organoid maturation.
- Published
- 2019
- Full Text
- View/download PDF