1. Association between 25(OH) vitamin D and multiple sclerosis: cohort, shared genetics, and Causality.
- Author
-
Yu, Xing-Hao, Lu, Hui-Min, Li, Jun, Su, Ming-Zhu, Li, Xiao-Min, and Jin, Yi
- Abstract
Background: Multiple Sclerosis (MS), an autoimmune disorder causing demyelination and neurological damage, has been linked to 25-hydroxyvitamin D (25OHD) levels, suggesting its role in immune response and MS onset. This study used GWAS datasets to investigate genetic associations between 25OHD and MS. Methods: We utilized a large-scale prospective cohort to evaluate serum 25OHD levels and MS risk. Linkage Disequilibrium Score Regression (LDSC) assessed genetic correlations between 25OHD levels and MS. Cross-trait genome-wide pleiotropy analysis revealed shared genetic loci. MAGMA analysis identified pleiotropic genes, enriched tissues, and gene sets. Stratified LDSC estimated tissue-specific and cell-specific heritability enrichment, and multi-trait co-localization analysis identified shared immune cell subsets. Bidirectional Mendelian Randomization (MR) assessed the causal association between 25OHD and MS risk. Results: The observational study found a nonlinear relationship between 25OHD levels and MS risk, with the lowest quartile showing significant risk elevation. Our findings revealed shared genetic structure between 25OHD levels and MS, suggesting a common biological pathway involving immune function and CNS integrity. We found 24 independent loci shared between 25OHD levels and MS risk, enriched in brain tissues and involved in pathways like LDL, HDL, and TG metabolism. Four loci (6p24.3, 6p22.2, 12q14.1, and 19p13.2) had strong co-localization evidence, with mapped genes as potential drug targets. Bidirectional MR analysis supported a causal effect of 25OHD levels on MS risk, suggesting 25OHD supplementation could modulate MS risk. Conclusion: This study reveals the complex relationship between 25OHD levels and MS, indicating that higher levels are not always advantageous and recommending moderation in supplementation. We identified SMARCA4 as a potential therapeutic target and detailed key pathways influencing this interaction. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF