4 results on '"Corbin, Laura J."'
Search Results
2. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology.
- Author
-
Hellmich, Charlotte, Durant, Claire, Jones, Matthew W., Timpson, Nicholas J., Bartsch, Ullrich, and Corbin, Laura J.
- Subjects
NEUROPHYSIOLOGY ,SCHIZOPHRENIA ,BRAIN imaging ,POLYSOMNOGRAPHY ,MOVEMENT sequences - Abstract
Background: Schizophrenia is a complex, polygenic disorder for which over 100 genetic variants have been identified that correlate with diagnosis. However, the biological mechanisms underpinning the different symptom clusters remain undefined. The rs1344706 single nucleotide polymorphism within ZNF804A was among the first genetic variants found to be associated with schizophrenia. Previously, neuroimaging and cognitive studies have revealed several associations between rs1344706 and brain structure and function. The aim of this study is to use a recall-by-genotype (RBG) design to investigate the biological basis for the association of ZNF804A variants with schizophrenia. A RBG study, implemented in a population cohort, will be used to evaluate the impact of genetic variation at rs1344706 on sleep neurophysiology and procedural memory consolidation in healthy participants. Methods/Design: Participants will be recruited from the Avon Longitudinal Study of Parents and Children (ALSPAC) on the basis of genotype at rs1344706 (n = 24). Each participant will be asked to take part in two nights of in-depth sleep monitoring (polysomnography) allowing collection of neurophysiological sleep data in a manner not amenable to large-scale study. Sleep questionnaires will be used to assess general sleep quality and subjective sleep experience after each in-house recording. A motor sequencing task (MST) will be performed before and after the second night of polysomnography. In order to gather additional data about habitual sleep behaviour participants will be asked to wear a wrist worn activity monitor (actiwatch) and complete a sleep diary for two weeks. Discussion: This study will explore the biological function of ZNF804A genotype (rs1344706) in healthy volunteers by examining detailed features of sleep architecture and physiology in relation to motor learning. Using a RBG approach will enable us to collect precise and detailed phenotypic data whilst achieving an informative biological gradient. It would not be feasible to collect such data in the large sample sizes that would be required under a random sampling scheme. By dissecting the role of individual variants associated with schizophrenia in this way, we can begin to unravel the complex genetic mechanisms of psychiatric disorders and pave the way for future development of novel therapeutic approaches. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
3. The utility of low-density genotyping for imputation in the Thoroughbred horse.
- Author
-
Corbin, Laura J., Kranis, Andreas, Blott, Sarah C., Swinburne, June E., Vaudin, Mark, Bishop, Stephen C., and Woolliams, John A.
- Subjects
GENE frequency ,GENOTYPES ,HORSE diseases ,STATISTICAL matching ,HAPLOTYPES ,SINGLE nucleotide polymorphisms ,GENETICS - Abstract
Background: Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. Results: Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. Conclusions: Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
4. Using inactivating mutations to provide insight into drug action.
- Author
-
Corbin LJ and Timpson NJ
- Abstract
The role of ezetimibe in lowering plasma cholesterol has been established; however, controversy remains about its clinical benefit. A recent study utilizes naturally occurring genetic variation within the NPC1-like 1 gene (NPC1L1) to demonstrate the potential for pharmacologic inhibition of the protein to reduce the risk of coronary heart disease. This research demonstrates the application of the concept of genocopy to a population-based validation of NPC1L1 as a therapeutic target.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.