Background: Space use strategies by foraging animals are often considered to be species-specific. However, similarity between conspecific strategies may also result from similar resource environments. Here, we revisit classic predictions of the relationships between the resource distribution and foragers' space use by tracking free-living foragers of a single species in two contrasting resource landscapes. At two main non-breeding areas along the East-Atlantic flyway (Wadden Sea, The Netherlands and Banc d'Arguin, Mauritania), we mapped prey distributions and derived resource landscapes in terms of the predicted intake rate of red knots ( Calidris canutus ), migratory molluscivore shorebirds. We tracked the foraging paths of 13 and 38 individual red knots at intervals of 1 s over two and five weeks in the Wadden Sea and at Banc d'Arguin, respectively. Mediated by competition for resources, we expected aggregation to be strong and site fidelity weak in an environment with large resource patches. The opposite was expected for small resource patches, but only if local resource abundances were high., Results: Compared with Banc d'Arguin , resource patches in the Wadden Sea were larger and the maximum local resource abundance was higher. However, because of constraints set by digestive capacity, the average potential intake rates by red knots were similar at the two study sites. Space-use patterns differed as predicted from these differences in resource landscapes. Whereas foraging red knots in the Wadden Sea roamed the mudflats in high aggregation without site fidelity (i.e. grouping nomads ), at Banc d'Arguin they showed less aggregation but were strongly site-faithful (i.e. solitary residents) ., Conclusion: The space use pattern of red knots in the two study areas showed diametrically opposite patterns. These differences could be explained from the distribution of resources in the two areas. Our findings imply that intraspecific similarities in space use patterns represent responses to similar resource environments rather than species-specificity. To predict how environmental change affects space use, we need to understand the degree to which space-use strategies result from developmental plasticity and behavioural flexibility. This requires not only tracking foragers throughout their development, but also tracking their environment in sufficient spatial and temporal detail., Competing Interests: All research, including animal experiments, was carried out according to Dutch law (DEC license NIOZ 10.04).Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.