9 results
Search Results
2. Genome plasticity in Paramecium bursaria revealed by population genomics.
- Author
-
Cheng, Yu-Hsuan, Liu, Chien-Fu Jeff, Yu, Yen-Hsin, Jhou, Yu-Ting, Fujishima, Masahiro, Tsai, Isheng Jason, and Leu, Jun-Yi
- Subjects
SEXUAL cycle ,GENE rearrangement ,PARAMECIUM ,GENOMES ,NATURAL selection ,DNA copy number variations ,THALAMIC nuclei - Abstract
Background: Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. Results: We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. Conclusions: We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.
- Author
-
Guérin, Frédéric, Arnaiz, Olivier, Boggetto, Nicole, Wilkes, Cyril Denby, Meyer, Eric, Sperling, Linda, and Duharcourt, Sandra
- Subjects
EUKARYOTES ,GERM cells ,SOMATIC cells ,PARAMECIUM ,GENE expression - Abstract
Background: DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. Results: We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. Conclusions: We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
4. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans.
- Author
-
Pavelitz, Thomas, Gray, Lucas T., Padilla, Stephanie L., Bailey, Arnold D., and Weiner, Alan M.
- Subjects
TRANSPOSONS ,CABBAGE looper ,PARAMECIUM ,GERM cells ,TETRAHYMENA thermophila ,COCKAYNE syndrome ,CEPHALOCHORDATA - Abstract
Background piggyBac domain (PGBD) transposons were discovered in the cabbage looper moth Trichoplusia ni and subsequently found in organisms ranging from fungi to humans. Three domesticated piggyBac elements have been described. In the ciliates Paramecium tetraurelia and Tetrahymena thermophila, homologs known as piggyMacs excise internal eliminated sequences from germline micronuclear DNA during regeneration of the new somatic macronucleus. In primates, a PGBD3 element inserted into the Cockayne syndrome group B (CSB) gene over 43 Mya serves as an alternative 3' terminal exon, enabling the CSB gene to generate both full length CSB and a conserved CSB-PGBD3 fusion protein that joins an Nterminal CSB domain to the C-terminal transposase domain. Results We describe a fourth domesticated piggyBac element called PGBD5. We show that i) PGBD5 was first domesticated in the common ancestor of the cephalochordate Branchiostoma floridae (aka lancelet or amphioxus) and vertebrates, and is conserved in all vertebrates including lamprey but cannot be found in more basal urochordates, hemichordates, or echinoderms; ii) the lancelet, lamprey, and human PGBD5 genes are syntenic and orthologous; iii) no potentially mobile ancestral PGBD5 elements can be identified in other more deeply rooted organisms; iv) although derived from an IS4-related transposase of the RNase H clan, PGBD5 protein is unlikely to retain enzymatic activity because the catalytic DDD(D) motif is not conserved; v) PGBD5 is preferentially expressed in certain granule cell lineages of the brain and in the central nervous system based on available mouse and human in situ hybridization data, and the tissue-specificity of documented mammalian EST and mRNA clones; vi) the human PGBD5 promoter and gene region is rich in bound regulatory factors including the neuron-restrictive silencer factors NRSF/REST and CoREST, as well as SIN3, KAP1, STAT3, and CTCF; and vii) despite preferential localization within the nucleus, PGBD5 protein is unlikely to bind DNA or chromatin as neither DNase I digestion nor high salt extraction release PGBD5 from fractionated mouse brain nuclei. Conclusions We speculate that the neural-specific PGBD5 transposase was domesticated >500 My after cephalochordates and vertebrates split from urochordates, and that PGBD5 may have played a role in the evolution of a primitive deuterostome neural network into a centralized nervous system. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
5. Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses.
- Author
-
Jeanniard, Adrien, Dunigan, David D., Gurnon, James R., Agarkova, Irina V., Ming Kang, Vitek, Jason, Duncan, Garry, McClung, O. William, Larsen, Megan, Claverie, Jean-Michel, Van Etten, James L., and Blanc, Guillaume
- Subjects
DNA viruses ,CHLORELLA viruses ,NUCLEOTIDE sequence ,SPECIES diversity ,PARAMECIUM ,PHYLOGENY ,EUKARYOTIC genomes ,MICROALGAE - Abstract
Background: Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 - 348 Kb/319 - 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses. Results: Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses. Conclusion: The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
6. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium.
- Author
-
Barth, Dana and Berendonk, Thomas U
- Subjects
NUCLEOTIDE sequencing ,PARAMECIUM ,CYTOSINE ,GENETIC code ,GUANINE ,MITOCHONDRIAL DNA ,AMINO acids - Abstract
Background: Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results: The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions: Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the guanine + cytosine content in P. tetraurelia mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
7. Parameters of proteome evolution from histograms of amino-acid sequence identities of paralogous proteins.
- Author
-
Axelsen, Jacob Bock, Koon-Kiu Yan, and Maslov, Sergei
- Subjects
PROTEINS ,GENOMES ,GENES ,ESCHERICHIA coli ,AMINO acids ,PARAMECIUM - Abstract
Background: The evolution of the full repertoire of proteins encoded in a given genome is mostly driven by gene duplications, deletions, and sequence modifications of existing proteins. Indirect information about relative rates and other intrinsic parameters of these three basic processes is contained in the proteome-wide distribution of sequence identities of pairs of paralogous proteins. Results: We introduce a simple mathematical framework based on a stochastic birth-and-death model that allows one to extract some of this information and apply it to the set of all pairs of paralogous proteins in H. pylori, E. coli, S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens. It was found that the histogram of sequence identities p generated by an all-to-all alignment of all protein sequences encoded in a genome is well fitted with a power-law form ~ p
-γ with the value of the exponent γ around 4 for the majority of organisms used in this study. This implies that the intraprotein variability of substitution rates is best described by the Gamma-distribution with the exponent α ≈ 0.33. Different features of the shape of such histograms allow us to quantify the ratio between the genome-wide average deletion/duplication rates and the amino-acid substitution rate. Conclusion: We separately measure the short-term ("raw") duplication and deletion rates r*dup , r*del which include gene copies that will be removed soon after the duplication event and their dramatically reduced long-term counterparts rdup , rdel . High deletion rate among recently duplicated proteins is consistent with a scenario in which they didn't have enough time to significantly change their functional roles and thus are to a large degree disposable. Systematic trends of each of the four duplication/deletion rates with the total number of genes in the genome were analyzed. All but the deletion rate of recent duplicates r*del were shown to systematically increase with Ngenes . Abnormally flat shapes of sequence identity histograms observed for yeast and human are consistent with lineages leading to these organisms undergoing one or more whole-genome duplications. This interpretation is corroborated by our analysis of the genome of Paramecium tetraurelia where the p-4 profile of the histogram is gradually restored by the successive removal of paralogs generated in its four known whole-genome duplication events. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
8. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies.
- Author
-
De Loubresse, Nicole Garreau, Ruiz, Françoise, Beisson, Janine, and Klotz, Catherine
- Subjects
TUBULINS ,PARAMECIUM ,MICROTUBULES ,NUCLEATION ,GENES - Abstract
Background: A breakthrough in the understanding of centriole assembly was provided by the characterization of the UNI3 gene in Chlamydomonas. Deletion of this gene, found to encode a novel member of the tubulin superfamily, delta-tubulin, results in the loss of the C-tubule, in the nine microtubule triplets which are the hallmark of centrioles and basal bodies. Delta-tubulin homologs have been identified in the genomes of mammals and protozoa, but their phylogenetic relationships are unclear and their function is not yet known. Results: Using the method of gene-specific silencing, we have inactivated the Paramecium deltatubulin gene, which was recently identified. This inactivation leads to loss of the C-tubule in all basal bodies, without any effect on ciliogenesis. This deficiency does not directly affect basal body duplication, but perturbs the cortical cytoskeleton, progressively leading to mislocalization and loss of basal bodies and to altered cell size and shape. Furthermore, additional loss of B- and even Atubules at one or more triplet sites are observed: around these incomplete cylinders, the remaining doublets are nevertheless positioned according to the native ninefold symmetry. Conclusions: The fact that in two distinct phyla, delta-tubulin plays a similar role provides a new basis for interpreting phylogenetic relationships among delta-tubulins. The role of delta-tubulin in C-tubule assembly reveals that tubulins contribute subtle specificities at microtubule nucleation sites. Our observations also demonstrate the existence of a prepattern for the ninefold symmetry of the organelle which is maintained even if less than 9 triplets develop. [ABSTRACT FROM AUTHOR]
- Published
- 2001
9. SF-Assemblin genes in Paramecium: phylogeny and phenotypes of RNAi silencing on the ciliary-striated rootlets and surface organization.
- Author
-
Nabi, Ashikun, Yano, Junji, Valentine, Megan S., Picariello, Tyler, and Van Houten, Judith L.
- Subjects
PARAMECIUM ,GENE silencing ,PHENOTYPES ,RNA interference ,GENES ,CELL anatomy ,CILIA & ciliary motion - Abstract
Background: Cilia emanate from basal bodies just underneath the cell membrane. Basal bodies must withstand torque from the ciliary beat and be appropriately spaced for cilia to beat in metachronal waves. Basal body rootlets provide stability for motile cilia. Paramecium has three. Our focus is on the largest one, the striated rootlet (SR). Paramecium basal bodies align in straight rows. Previously we found a potential role for the SR in this alignment. Here we present a phylogeny of the Paramecium homologs of the SF-Assemblin gene of the SR of Chlamydomonas, and the organization of these genes. We describe the phenotypes from RNA interference (RNAi) silencing of genes and gene groups. Methods: Phenotypes of the RNAi depletions were characterized by immunofluorescence (IF), electron microscopy, and mass spectrometry. Results: We found 30 genes for Paramecium SF-Assemblin homologs (SFA) organized into 13 Paralog Groups (further categorized in five Structural Groups). Representatives of Paralog Groups were found in the SRs. Silencing the transcripts of any of the Structural Groups correlates with misaligned rows of basal bodies, SRs, and cortical units. The silencing of Structural Groups was key and gave us the ability to systematically disrupt SR structures and cell surface organization. Conclusions: Silencing of SFA genes and Paralog Groups shows no effects on the SR or the cell surface organization. Silencing of the larger Structural Groups has an enormous impact on rows of basal bodies, SRs and cortical units, and SR striations, and length. Misaligned basal bodies have cilia causing the cells to swim in abnormal paths. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.