1. A one-sample test for normality with kernel methods
- Author
-
Jérémie Kellner, Alain Celisse, MOdel for Data Analysis and Learning (MODAL), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies, and Laboratoire Paul Painlevé - UMR 8524 (LPP)
- Subjects
Statistics and Probability ,maximum mean discrepancy ,media_common.quotation_subject ,Mathematics - Statistics Theory ,normality test ,01 natural sciences ,010104 statistics & probability ,Normality test ,symbols.namesake ,kernel methods ,Goodness of fit ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,parametric bootstrap ,Applied mathematics ,0101 mathematics ,Gaussian process ,reproducing kernel hilbert space ,Normality ,Mathematics ,media_common ,sequential testing ,Goodness-of fit test ,010102 general mathematics ,Covariance ,16. Peace & justice ,Kernel method ,symbols ,Reproducing kernel Hilbert space ,Test data - Abstract
We propose a new one-sample test for normality in a Reproducing Kernel Hilbert Space (RKHS). Namely, we test the null-hypothesis of belonging to a given family of Gaussian distributions. Hence, our procedure may be applied either to test data for normality or to test parameters (mean and covariance) if data are assumed Gaussian. Our test is based on the same principle as the MMD (Maximum Mean Discrepancy) which is usually used for two-sample tests such as homogeneity or independence testing. Our method makes use of a special kind of parametric bootstrap (typical of goodness-of-fit tests) which is computationally more efficient than standard parametric bootstrap. Moreover, an upper bound for the Type-II error highlights the dependence on influential quantities. Experiments illustrate the practical improvement allowed by our test in high-dimensional settings where common normality tests are known to fail. We also consider an application to covariance rank selection through a sequential procedure.
- Published
- 2019