Purpose: Herpes simplex virus type I (HSV-1) infection of corneal epithelial cells activates ataxia telangiectasia mutated (ATM), an apical kinase in the host DNA damage response pathway, whose activity is necessary for the progression of lytic HSV-1 infection. The purpose of this study is to investigate the mechanism of ATM activation by HSV-1 in the corneal epithelium, as well as its functional significance., Methods: Mechanistic studies were performed in cultured human corneal epithelial cell lines (hTCEpi, HCE), as well as in esophageal (EPC2) and oral (OKF6) cell lines. Transfection-based experiments were performed in HEK293 cells. HSV-1 infection was carried out using the wild-type KOS strain, various mutant strains (tsB7, d120, 7134, i13, n208), and bacterial artificial chromosomes (fHSVΔpac, pM24). Inhibitors of ATM (KU-55933), protein synthesis (cycloheximide), and viral DNA replication (phosphonoacetic acid) were used. Outcomes of infection were assayed using Western blotting, qRT-PCR, immunofluorescence, and comet assay., Results: This study demonstrates that HSV-1-mediated ATM activation in corneal epithelial cells relies on the viral immediate early gene product ICP4 and requires the presence of the viral genome in the host nucleus. We show that ATM activation is independent of viral genome replication, the ICP0 protein, and the presence of DNA lesions. Interestingly, ATM activity appears to be necessary at the onset of infection, but dispensable at the later stages., Conclusions: This study expands our understanding of HSV-1 virus-host interactions in the corneal epithelium and identifies potential areas of future investigation and therapeutic intervention in herpes keratitis.