1. Label Propagation-Based Semi-Supervised Learning for Hate Speech Classification
- Author
-
Dietrich Klakow, Irina Illina, Dana Ruiter, Ashwin Geet D'Sa, Dominique Fohr, Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Saarland University [Saarbrücken], and GRID5000
- Subjects
ComputingMethodologies_PATTERNRECOGNITION ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Computer science ,Speech recognition ,0202 electrical engineering, electronic engineering, information engineering ,Labeled data ,[INFO]Computer Science [cs] ,020206 networking & telecommunications ,02 engineering and technology ,Semi-supervised learning ,Speech classification ,Classifier (UML) ,Label propagation - Abstract
International audience; Research on hate speech classification has received increased attention. In real-life scenarios , a small amount of labeled hate speech data is available to train a reliable classifier. Semi-supervised learning takes advantage of a small amount of labeled data and a large amount of unlabeled data. In this paper, label propagation-based semi-supervised learning is explored for the task of hate speech classification. The quality of labeling the unla-beled set depends on the input representations. In this work, we show that pre-trained representations are label agnostic, and when used with label propagation yield poor results. Neu-ral network-based fine-tuning can be adopted to learn task-specific representations using a small amount of labeled data. We show that fully fine-tuned representations may not always be the best representations for the label propagation and intermediate representations may perform better in a semi-supervised setup.
- Published
- 2020
- Full Text
- View/download PDF