1. Characteristics of Air-Oil Slug Flow in Inclined Pipe Using Tomographic Techniques
- Author
-
V. Hernandez-Perez, S. Sharaf, Barry J. Azzopardi, and Lokman A. Abdulkareem
- Subjects
Plane (geometry) ,Bubble ,Flow (psychology) ,Geotechnical engineering ,Tomography ,Mechanics ,Electrical capacitance tomography ,Porosity ,Slug flow ,Geology ,Open-channel flow - Abstract
The structure of gas liquid flow in horizontal and vertical pipes to some extent is well understood. However, the situation in inclined pipes is much more difficult with very little work published in literature. Changes in physical phenomena occur as the pipe inclination angle varies from the vertical through to inclined and then to horizontal. This work describes a study carried out at the University Of Nottingham on the effects of inclination on gas / liquid slug flow. Two advanced tomography techniques were applied simultaneously to the flow of a mixture of air and silicone oil in a 67 mm internal diameter pipe and the pipe was inclined at angles 0, 5, 10, 30, 45, 60, 80, 90 degrees. This paper reports on the use of twin plane electrical capacitance tomography (ECT) system developed by TomoFlow electronics Ltd to measure flow characteristics in gas-liquid flows. We report measurements over a range of liquid superficial velocities from 0.05 m/s to 0.5 m/s and gas superficial velocities from 0.06 m/s to 6 m/s at all the above angles in a pipe 6 m long. A second technique, Capacitance Wire Mesh Sensor (WMS) developed at Forschungszentrum Rossendorf-Dresden/Germany was also present in the tests, The results for the two sensors are shown to be within 1% of each other in some instances when comparing cross-sectional averaged void fraction. The data was recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. This enabled an examination of the flow to be carried out at several levels of complexity. Both measuring sensors provide time and cross-sectionally resolved information about the spatial distribution of the phases. In present paper, the effect of inclination on the characteristics of slug flow is presented. Radial gas volume fraction profiles and bubble size distributions were also processed from the wire-mesh sensor output. The results indicate that the pipe inclination has a significant effect on the slug flow characteristics.Copyright © 2011 by ASME
- Published
- 2011
- Full Text
- View/download PDF