1. An Effect of Bismuth Ion on the Reduction of Terbium Ion in Molten LiCl-KCl Eutectic Salt
- Author
-
Ji Hye Park, Byung Gi Park, Beom Kyu Kim, Won Ki Kim, and Hwa Jeong Han
- Subjects
chemistry.chemical_classification ,Materials science ,chemistry ,Electrode ,Inorganic chemistry ,Intermetallic ,chemistry.chemical_element ,Salt (chemistry) ,Terbium ,Tungsten ,Ion ,Bismuth ,Eutectic system - Abstract
A salt waste generated from the pyroprocess contains residual actinides and needs to be purified for recycling of the salt and waste conditioning. A co-reduction process could be considered for removal of residual actinides from the salt waste, which contains lanthanides and residual actinides. In the study, specifically, an effect of Bi(III) ion on the electrochemical reaction of Tb(III) ion was investigated in the molten LiCl-KCl eutectic with BiCl3 and TbCl3 at 773 K using electrochemical techniques of cyclic voltammetry, square wave voltammetry and open circuit chronopotentiometry. Tb(III) has a single redox couple without Bi(III). However, the cyclic voltammograms obtained at tungsten electrode in LiCl-KCl-BiCl3-TbCl3 showed four redox couples. The square wave voltammogram in same condition also showed five reduction peaks. Cyclic voltammogram and square wave voltammogram was resolved to find the accurate peaks for redox reaction. Each peak indicates the formation of Tb-Bi intermetallic compound except Tb(III) reduction peak. From the phase diagram of Tb-Bi, it is inferred that each peak corresponds to TbBi2, TbBi, Tb4Bi3, and Tb5Bi3. The open circuit chronopotentiometry was conducted to estimate Gibbs free energy of formation of Tb-Bi intermetallic compound. The experimental results obtained from three kind of the electrochemical techniques showed that Tb-Bi intermetallic compounds were electrochemically formed under potential of Tb(III) reduction potential by co-reduction of Bi(III) and Tb(III). These results indicate that underpotential deposition by co-reduction could be used for Tb(III) removal from the salt waste with Bi(III).
- Published
- 2018
- Full Text
- View/download PDF