1. Histone deacetylase-6 modulates the effects of 4°C platelets on vascular endothelial permeability
- Author
-
Byron Miyazawa, Alpa Trivedi, Lindsay Vivona, Maximillian Lin, Daniel Potter, Alison Nair, Mark Barry, Andrew P. Cap, and Shibani Pati
- Subjects
Blood Platelets ,Tubulin ,Transfusion Medicine ,Temperature ,Hematology ,Cardiovascular ,Histone Deacetylases ,Permeability - Abstract
Platelets (PLTs) stored at 4°C exhibit equivalent or superior hemostatic function compared with 22°C PLTs, but have shorter circulation times and a decreased ability to modulate vascular permeability. These differences may be due to morphological changes and storage-induced activation. Using a proteomics-based approach, we found that 4°C-stored PLTs express decreased α-tubulin, a key PLT structural protein. PLT activation is characterized by α-tubulin deacetylation, which is regulated by histone deacetylase-6 (HDAC-6). We hypothesized that inhibition of HDAC-6 in stored PLTs will improve their ability to regulate vascular permeability through reduced activation and α-tubulin deacetylation. In an in vivo model of vascular permeability, treatment of 4°C PLTs with the HDAC-6 inhibitor tubacin enhanced the vasculoprotective properties of untreated 4°C PLTs. 4°C PLT circulation, however, was unchanged by tubacin treatment, suggesting that circulation time may not be a critical factor in determining the vasculoprotective effects of PLTs. Assessing the factor content of stored PLTs revealed that angiopoietin-1 (Ang-1) increased in 4°C PLTs over time, which was further enhanced by tubacin treatment. In addition, angiopoietin-2, an inducer of vascular leak and antagonist of Ang-1, inhibited PLT barrier protection, suggesting involvement of the Tie-2 pathway. This study demonstrates that HDAC-6 inhibition with tubacin attenuates the diminished vasculo-protective properties of 4°C PLTs, and these properties may be independent of PLT circulation time.
- Published
- 2023
- Full Text
- View/download PDF