1. Identification of the critical residues of TMPRSS2 for entry and host range of human coronavirus HKU1.
- Author
-
Yahan Chen, Xiuyuan Ou, Pei Li, Fuwen Zan, Lin Tan, and Zhaohui Qian
- Subjects
- *
CELL fusion , *COMMON cold , *CORONAVIRUSES , *ASPARAGINE , *PEPTIDASE - Abstract
Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF