Trubl, Gareth, Jang, Ho Bin, Roux, Simon, Emerson, Joanne B., Solonenko, Natalie, Vik, Dean R., Solden, Lindsey, Ellenbogen, Jared, Runyon, Alexander T., Bolduc, Benjamin, Woodcroft, Ben J., Saleska, Scott R., Tyson, Gene W., Wrighton, Kelly C., Sullivan, Matthew B., Rich, Virginia I., Trubl, Gareth, Jang, Ho Bin, Roux, Simon, Emerson, Joanne B., Solonenko, Natalie, Vik, Dean R., Solden, Lindsey, Ellenbogen, Jared, Runyon, Alexander T., Bolduc, Benjamin, Woodcroft, Ben J., Saleska, Scott R., Tyson, Gene W., Wrighton, Kelly C., Sullivan, Matthew B., and Rich, Virginia I.
Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (viral operational taxonomic units [vOTUs]) recovered from seven quantitatively derived (i.e., not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient at the Stordalen Mire field site in northern Sweden. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like assemblages in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteobacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty auxiliary metabolic genes (AMGs) were identified and suggested virus-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide binding, and regulation of sporulation. Together, these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic.