1. Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study.
- Author
-
Salimraj R, Zhang L, Hinchliffe P, Wellington EM, Brem J, Schofield CJ, Gaze WH, and Spencer J
- Subjects
- Crystallography, X-Ray, Escherichia coli drug effects, Escherichia coli genetics, Microbial Sensitivity Tests, Models, Molecular, Phylogeny, Protein Conformation, Recombinant Proteins chemistry, Recombinant Proteins genetics, Recombinant Proteins metabolism, beta-Lactamases metabolism, Metagenomics methods, beta-Lactamases chemistry, beta-Lactamases genetics
- Abstract
β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance., (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)
- Published
- 2016
- Full Text
- View/download PDF