1. Changes in Intrinsic Antibiotic Susceptibility during a Long-Term Evolution Experiment with <named-content content-type='genus-species'>Escherichia coli</named-content>
- Author
-
Richard E. Lenski, Mikaël Martin, Dominique Schneider, Otmane Lamrabet, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Génomique et Évolution des Microorganismes (TIMC-IMAG-GEM), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA, Michigan State University [East Lansing], and Michigan State University System-Michigan State University System
- Subjects
antibiotic resistance ,medicine.drug_class ,[SDV]Life Sciences [q-bio] ,Antibiotics ,mutation accumulation ,Ecological and Evolutionary Science ,Microbial Sensitivity Tests ,Biology ,medicine.disease_cause ,Microbiology ,03 medical and health sciences ,Antibiotic resistance ,Pleiotropy ,Virology ,evolution ,pleiotropy ,medicine ,Escherichia coli ,Gene ,030304 developmental biology ,0303 health sciences ,030306 microbiology ,biology.organism_classification ,Biological Evolution ,QR1-502 ,Anti-Bacterial Agents ,Streptomycin ,Genetic Fitness ,Adaptation ,Bacteria ,Research Article ,medicine.drug - Abstract
Resistance to antibiotics often evolves when bacteria encounter antibiotics. However, bacterial strains and species without any known exposure to these drugs also vary in their intrinsic susceptibility. In many cases, evolved resistance has been shown to be costly to the bacteria, such that resistant types have reduced competitiveness relative to their sensitive progenitors in the absence of antibiotics. In this study, we examined changes in the susceptibilities of 12 populations of Escherichia coli to 15 antibiotics after 2,000 and 50,000 generations without exposure to any drug. The evolved bacteria tended to become more susceptible to most antibiotics, with most of the change occurring during the first 2,000 generations, when the bacteria were undergoing rapid adaptation to their experimental conditions. On balance, our findings indicate that bacteria with low levels of intrinsic resistance can, in the absence of relevant selection, become even more susceptible to antibiotics., High-level resistance often evolves when populations of bacteria are exposed to antibiotics, by either mutations or horizontally acquired genes. There is also variation in the intrinsic resistance levels of different bacterial strains and species that is not associated with any known history of exposure. In many cases, evolved resistance is costly to the bacteria, such that resistant types have lower fitness than their progenitors in the absence of antibiotics. Some longer-term studies have shown that bacteria often evolve compensatory changes that overcome these tradeoffs, but even those studies have typically lasted only a few hundred generations. In this study, we examine changes in the susceptibilities of 12 populations of Escherichia coli to 15 antibiotics after 2,000 and 50,000 generations without exposure to any antibiotic. On average, the evolved bacteria were more susceptible to most antibiotics than was their ancestor. The bacteria at 50,000 generations tended to be even more susceptible than after 2,000 generations, although most of the change occurred during the first 2,000 generations. Despite the general trend toward increased susceptibility, we saw diverse outcomes with different antibiotics. For streptomycin, which was the only drug to which the ancestral strain was highly resistant, none of the evolved lines showed any increased susceptibility. The independently evolved lineages often exhibited correlated responses to the antibiotics, with correlations usually corresponding to their modes of action. On balance, our study shows that bacteria with low levels of intrinsic resistance often evolve to become even more susceptible to antibiotics in the absence of corresponding selection.
- Published
- 2019