1. Short-term risk of fracture is increased by deficits in cortical and trabecular bone microarchitecture independent of DXA BMD and FRAX: Bone Microarchitecture International Consortium (BoMIC) prospective cohorts.
- Author
-
Sarfati M, Chapurlat R, Dufour AB, Sornay-Rendu E, Merle B, Boyd SK, Whittier DE, Hanley DA, Goltzman D, Szulc P, Wong AKO, Lespessailles E, Khosla S, Ferrari S, Biver E, Ohlsson C, Lorentzon M, Mellström D, Nethander M, Samelson EJ, Kiel DP, Hannan MT, and Bouxsein ML
- Subjects
- Humans, Female, Male, Aged, Prospective Studies, Risk Factors, Middle Aged, Fractures, Bone diagnostic imaging, Fractures, Bone epidemiology, Osteoporotic Fractures diagnostic imaging, Osteoporotic Fractures epidemiology, Osteoporotic Fractures physiopathology, Incidence, Risk Assessment, Radius diagnostic imaging, Radius pathology, Cancellous Bone diagnostic imaging, Cancellous Bone pathology, Bone Density, Absorptiometry, Photon, Cortical Bone diagnostic imaging, Cortical Bone pathology
- Abstract
Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society for Bone and Mineral Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF