1. Podocytes are lost from glomeruli before completing apoptosis.
- Author
-
Yamamoto K, Okabe M, Tanaka K, Yokoo T, Pastan I, Araoka T, Osafune K, Udagawa T, Koizumi M, and Matsusaka T
- Subjects
- Mice, Humans, Animals, Caspase 3 metabolism, Lamin Type A metabolism, Lamin Type A pharmacology, bcl-2-Associated X Protein metabolism, Apoptosis, Lactate Dehydrogenases metabolism, Podocytes metabolism, Immunotoxins
- Abstract
Although apoptosis of podocytes has been widely reported in in vitro studies, it has been less frequently and less definitively documented in in vivo situations. To investigate this discrepancy, we analyzed the dying process of podocytes in vitro and in vivo using LMB2, a human (h)CD25-directed immunotoxin. LMB2 induced cell death within 2 days in 56.8 ± 13.6% of cultured podocytes expressing hCD25 in a caspase-3, Bak1, and Bax-dependent manner. LMB2 induced typical apoptotic features, including TUNEL staining and fragmented nuclei without lactate dehydrogenase leakage. In vivo, LMB2 effectively eliminated hCD25-expressing podocytes in NEP25 mice. Podocytes injured by LMB2 were occasionally stained for cleaved caspase-3 and cleaved lamin A but never for TUNEL. Urinary sediment contained TUNEL-positive podocytes. To examine the effect of glomerular filtration, we performed unilateral ureteral obstruction in NEP25 mice treated with LMB2 1 day before euthanasia. In the obstructed kidney, glomeruli contained significantly more cleaved lamin A-positive podocytes than those in the contralateral kidney (50.1 ± 5.4% vs. 29.3 ± 4.1%, P < 0.001). To further examine the dying process without glomerular filtration, we treated kidney organoids generated from nephron progenitor cells of NEP25 mice with LMB2. Podocytes showed TUNEL staining and nuclear fragmentation. These results indicate that on activation of apoptotic caspases, podocytes are detached and lost in the urine before nuclear fragmentation and that the physical force of glomerular filtration facilitates detachment. This phenomenon may be the reason why definitive apoptosis is not observed in podocytes in vivo. NEW & NOTEWORTHY This report clarifies why morphologically definitive apoptosis is not observed in podocytes in vivo. When caspase-3 is activated in podocytes, these cells are immediately detached from the glomerulus and lost in the urine before DNA fragmentation occurs. Detachment is facilitated by glomerular filtration. This phenomenon explains why podocytes in vivo rarely show TUNEL staining and never apoptotic bodies.
- Published
- 2022
- Full Text
- View/download PDF