1. Third-order charge transport in a magnetic topological semimetal
- Author
-
Ziming Zhu, Huiying Liu, Yongheng Ge, Zeying Zhang, Weikang Wu, Cong Xiao, and Shengyuan A. Yang
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Magnetic topological materials and their physical signatures are a focus of current research. Here, by first-principles calculations and symmetry analysis, we reveal topological semimetal states in an existing antiferromagnet ThMn2Si2. Depending on the N\'eel vector orientation, the topological band crossings near the Fermi level form either a double-nodal loop or two pairs of Dirac points,which are all fourfold degenerate and robust under spin-orbit coupling. These topological features produce large Berry connection polarizability, which leads to enhanced nonlinear transport effects. Particularly, we evaluate the third order current response, which dominates the transverse charge current. We show that the nonlinear response can be much more sensitive to topological phase transitions than linear response, which offers a powerful tool for characterizing magnetic topological semimetals., Comment: 5 pages, 5 figures
- Published
- 2023
- Full Text
- View/download PDF