1. Capillary-Stress Controlled Rheometer Reveals the Dual Rheology of Shear-Thickening Suspensions
- Author
-
Bruno Etcheverry, Yoël Forterre, and Bloen Metzger
- Subjects
Physics ,QC1-999 - Abstract
The rheology of dense colloidal suspensions, which may undergo discontinuous shear thickening or shear jamming, is particularly difficult to analyze with conventional rheometers. Here, we develop a rheometer adapted to colloidal suspensions: the “capillarytron,” which uses the air-suspension capillary interface to impose particle (or osmotic) pressure during shear. The main virtues of this new device are that (i) it gives direct access to the suspension friction coefficient, (ii) it operates for very dense suspensions up to jamming, and, most importantly, (iii) it decouples the stresses developed within the suspension from the applied shear rate. We can, thus, smoothly move through the different frictional states of the system, precisely in the range of volume fractions where discontinuous shear thickening or shear jamming occur under volume-imposed conditions. Our results obtained with the capillarytron provide the first complete characterization of the dual frictional behavior of a model shear-thickening suspension, in agreement with the recently proposed frictional transition scenario. Based on a new concept in rheometry, the capillarytron unlocks the path to pressure-imposed rheology on colloidal and Brownian suspensions. Moreover, its fine control of the particle pressure via the soft capillary interface opens the possibility to explore the flow of “fragile” particles close to jamming, such as Brownian colloids, active particles, and living cells.
- Published
- 2023
- Full Text
- View/download PDF