9 results on '"Xinpeng Xu"'
Search Results
2. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
- Author
-
Jiaolong Zhang, Xinpeng Xu, and Tiezheng Qian
- Subjects
- *
SHEAR flow , *ANISOTROPY , *SYMMETRY (Physics) , *HYDRODYNAMICS , *ENERGY dissipation , *ORBITAL mechanics - Abstract
The hydrodynamic reciprocal theorem for Stokes flows is generalized to incorporate the Navier slip boundary condition, which can be derived from Onsager's variational principle of least energy dissipation. The hydrodynamic reciprocal relations and the Jeffery orbit, both of which arise from the motion of a slippery anisotropic particle in a simple viscous shear flow, are investigated theoretically and numerically using the fluid particle dynamics method [Phys. Rev. Lett. 85, 1338 (2000)]. For a slippery elliptical particle in a linear shear flow, the hydrodynamic reciprocal relations between the rotational torque and the shear stress are studied and related to the Jeffery orbit, showing that the boundary slip can effectively enhance the anisotropy of the particle. Physically, by replacing the no-slip boundary condition with the Navier slip condition at the particle surface, the cross coupling between the rotational torque and the shear stress is enhanced, as manifested through a dimensionless parameter in both of the hydrodynamic reciprocal relations and the Jeffery orbit. In addition, simulations for a circular particle patterned with portions of no-slip and Navier slip are carried out, showing that the particle possesses an effective anisotropy and follows the Jeffery orbit as well. This effective anisotropy can be tuned by changing the ratio of no-slip portion to slip potion. The connection of the present work to nematic liquid crystals' constitutive relations is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
3. Single-bubble dynamics in pool boiling of one-component fluids.
- Author
-
Xinpeng Xu and Tiezheng Qian
- Subjects
- *
FLUID dynamics , *BUBBLE dynamics , *SUPERHEATING reactors , *VAPOR-liquid equilibrium , *FILM boiling , *NUCLEATION - Abstract
We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
4. Hydrodynamics of Leidenfrost droplets in one-component fluids.
- Author
-
Xinpeng Xu and Tiezheng Qian
- Subjects
- *
HYDRODYNAMICS , *LEIDENFROST effect , *DROPLETS , *SCIENTIFIC observation , *PHYSICS experiments , *SIMULATION methods & models - Abstract
Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
5. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.
- Author
-
Xinpeng Xu and Tiezheng Qian
- Subjects
- *
THERMAL analysis , *MATHEMATICAL singularities , *FLUID dynamics , *SUBSTRATES (Materials science) , *TEMPERATURE effect , *EVAPORATION (Chemistry) , *CONDENSATION , *CONTACT mechanics , *SIMULATION methods & models - Abstract
Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
6. Droplet motion in one-component fluids on solid substrates with wettability gradients.
- Author
-
Xinpeng Xu and Tiezheng Qian
- Subjects
- *
MOTION , *FLUID dynamics , *HEAT flux , *HYDRODYNAMICS , *VAN der Waals forces , *DROPLETS , *PHASE transitions , *WETTING - Abstract
Droplet motion on solid substrates has been widely studied not only because of its importance in fundamental research but also because of its promising potentials in droplet-based devices developed for various applications in chemistry, biology, and industry. In this paper, we investigate the motion of an evaporating droplet in one-component fluids on a solid substrate with a wettability gradient. As is well known, there are two major difficulties in the continuum description of fluid flows and heat fluxes near the contact line of droplets on solid substrates, namely, the hydrodynamic (stress) singularity and thermal singularity. To model the droplet motion, we use the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] for the hydrodynamic equations in the bulk region, supplemented with the boundary conditions at the fluid-solid interface. In this continuum hydrodynamic model, various physical processes involved in the droplet motion can be taken into account simultaneously, e.g., phase transitions (evaporation or condensation), capillary flows, fluid velocity slip, and substrate cooling or heating. Due to the use of the phase field method (diffuse interface method), the hydrodynamic and thermal singularities are resolved automatically. Furthermore, in the dynamic van der Waals theory, the evaporation or condensation rate at the liquid-gas interface is an outcome of the calculation rather than a prerequisite as in most of the other models proposed for evaporating droplets. Numerical results show that the droplet migrates in the direction of increasing wettability on the solid substrates. The migration velocity of the droplet is found to be proportional to the wettability gradients as predicted by Brochard [Langmuir 5, 432 (1989)]. The proportionality coefficient is found to be linearly dependent on the ratio of slip length to initial droplet radius. These results indicate that the steady migration of the droplets results from the balance between the (conservative) driving force due to the wettability gradient and the (dissipative) viscous drag force. In addition, we study the motion of droplets on cooled or heated solid substrates with wettability gradients. The fast temperature variations from the solid to the fluid can be accurately described in the present approach. It is observed that accompanying the droplet migration, the contact lines move through phase transition and boundary velocity slip with their relative contributions mostly determined by the slip length. The results presented in this paper may lead to a more complete understanding of the droplet motion driven by wettability gradients with a detailed picture of the fluid flows and phase transitions in the vicinity of the moving contact line. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
7. Compressive elasticity of polydisperse biopolymer gels.
- Author
-
Xinpeng Xu and Safran, Samuel A.
- Subjects
- *
ELASTICITY , *POLYDISPERSE polymers , *POLYMER colloids - Abstract
We theoretically predict the nonlinear elastic responses of polydisperse biopolymer gels to uniaxial compression. We analyze the competition between compressive stiffening due to polymer densification by out-going solvent flow and compressive softening due to continuous polymer buckling. We point out that the polydispersity in polymer lengths can result in an intrinsic, equilibrium mode of nonaffine compression: nonuniform strain but with uniform force distribution, which is found to be more energetically preferable than affine deformation. In this case, the gel softens significantly after the onset of polymer buckling at small compression, but as compression increases, densification-induced stiffening becomes important and a modulus plateau should be observed for a large range of strain. We also relate our results to recent compression experiments on collagen gels and fibrin gels. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
8. Generic Long-Range Interactions Between Passive Bodies in an Active Fluid.
- Author
-
Yongjoo Baek, Solon, Alexandre P., Xinpeng Xu, Nikola, Nikolai, and Kafri, Yariv
- Subjects
- *
LONG range intramolecular interactions , *ANISOTROPY , *CHEMICAL reactions , *MOLECULAR self-assembly - Abstract
A single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned nonchiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Accurate in situ Measurement of Ellipticity Based on Subcycle Ionization Dynamics.
- Author
-
Chuncheng Wang, Xiaokai Li, Xiang-Ru Xiao, Yizhang Yang, Sizuo Luo, Xitao Yu, Xinpeng Xu, Liang-You Peng, Qihuang Gong, and Dajun Ding
- Subjects
- *
ELLIPTIC polarization , *LASER pulses , *ELECTRIC fields - Abstract
Elliptically polarized laser pulses (EPLPs) are widely applied in many fields of ultrafast sciences, but the ellipticity (ϵ) has never been in situ measured in the interaction zone of the laser focus. In this Letter, we propose and realize a robust scheme to retrieve the ϵ by temporally overlapping two identical counterrotating EPLPs. The combined linearly electric field is coherently controlled to ionize Xe atoms by varying the phase delay between the two EPLPs. The electron spectra of the above-threshold ionization and the ion yield are sensitively modulated by the phase delay. We demonstrate that these modulations can be used to accurately determine ϵ of the EPLP. We show that the present method is highly reliable and is applicable in a wide range of laser parameters. The accurate retrieval of ϵ offers a better characterization of a laser pulse, promising a more delicate and quantitative control of the subcycle dynamics in many strong field processes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.