The evolution of the growth of a ricepile is studied in three dimensions. With time, the pile approaches a critical state with a certain slope. Assuming extremal dynamics in the evolution of the pile, the way the critical state is approached is dictated by the scaling properties of the critical state itself. Experimentally, we determine the envelope of the maximal slope, which is a measure for the distance from the critical state, as well as the growth of the average avalanche size with time. These quantities obey power-law scaling, where the experimental exponents are in good agreement with those obtained from an earlier determination of the critical state properties and extremal dynamics. Furthermore, we discuss the influence of the transient state on the avalanche size distribution, which may have applications in the prevention of large avalanches in natural systems.