Liao SK, Cai WQ, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren JG, Liu WY, Li Y, Shen Q, Cao Y, Li FZ, Wang JF, Huang YM, Deng L, Xi T, Ma L, Hu T, Li L, Liu NL, Koidl F, Wang P, Chen YA, Wang XB, Steindorfer M, Kirchner G, Lu CY, Shu R, Ursin R, Scheidl T, Peng CZ, Wang JY, Zeilinger A, and Pan JW
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.