1. Competition between Allowed and First-Forbidden β Decay: The Case of ^{208}Hg→^{208}Tl.
- Author
-
Carroll RJ, Podolyák Z, Berry T, Grawe H, Alexander T, Andreyev AN, Ansari S, Borge MJG, Brunet M, Creswell JR, Fraile LM, Fahlander C, Fynbo HOU, Gamba ER, Gelletly W, Gerst RB, Górska M, Gredley A, Greenlees PT, Harkness-Brennan LJ, Huyse M, Judge SM, Judson DS, Konki J, Kurcewicz J, Kuti I, Lalkovski S, Lazarus IH, Lică R, Lund M, Madurga M, Marginean N, Marginean R, Marroquin I, Mihai C, Mihai RE, Nácher E, Negret A, Nita C, Pascu S, Page RD, Patel Z, Perea A, Phrompao J, Piersa M, Pucknell V, Rahkila P, Rapisarda E, Regan PH, Rotaru F, Rudigier M, Shand CM, Shearman R, Stegemann S, Stora T, Sotty C, Tengblad O, Van Duppen P, Vedia V, Wadsworth R, Walker PM, Warr N, Wearing F, and De Witte H
- Abstract
The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden β decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}β decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.
- Published
- 2020
- Full Text
- View/download PDF