1. Extended p_{3/2} Neutron Orbital and the N=32 Shell Closure in ^{52}Ca.
- Author
-
Enciu M, Liu HN, Obertelli A, Doornenbal P, Nowacki F, Ogata K, Poves A, Yoshida K, Achouri NL, Baba H, Browne F, Calvet D, Château F, Chen S, Chiga N, Corsi A, Cortés ML, Delbart A, Gheller JM, Giganon A, Gillibert A, Hilaire C, Isobe T, Kobayashi T, Kubota Y, Lapoux V, Motobayashi T, Murray I, Otsu H, Panin V, Paul N, Rodriguez W, Sakurai H, Sasano M, Steppenbeck D, Stuhl L, Sun YL, Togano Y, Uesaka T, Wimmer K, Yoneda K, Aktas O, Aumann T, Chung LX, Flavigny F, Franchoo S, Gasparic I, Gerst RB, Gibelin J, Hahn KI, Kim D, Kondo Y, Koseoglou P, Lee J, Lehr C, Li PJ, Linh BD, Lokotko T, MacCormick M, Moschner K, Nakamura T, Park SY, Rossi D, Sahin E, Söderström PA, Sohler D, Takeuchi S, Toernqvist H, Vaquero V, Wagner V, Wang S, Werner V, Xu X, Yamada H, Yan D, Yang Z, Yasuda M, and Zanetti L
- Abstract
The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_{7/2} and 2p_{3/2} orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_{3/2} orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
- Published
- 2022
- Full Text
- View/download PDF