1. Energy dissipation and recovery in a simple model with reversible cross-links.
- Author
-
Nabavi SS, Fratzl P, and Hartmann MA
- Abstract
Reversible cross-linking is a method of enhancing the mechanical properties of polymeric materials. The inspiration for this kind of cross-linking comes from nature, which uses this strategy in a large variety of biological materials to dramatically increase their toughness. Recently, first attempts were made to transfer this principle to technological applications. In this study, Monte Carlo simulations are used to investigate the effect of the number and the topology of reversible cross-links on the mechanical performance of a simple model system. Computational cyclic loading tests are performed, and the work to fracture and the energy dissipation per cycle are determined, which both increase when the density of cross-links is increased. Furthermore, a different topology of the bonds may increase the work to fracture by a factor of more than 2 for the same density. This dependence of the mechanical properties on the topology of the bonds has important implications on the self-healing properties of such systems, because only a fast return of the system to its unloaded state after release of the load ensures that the optimal topology may form.
- Published
- 2015
- Full Text
- View/download PDF