6 results on '"Yost, Shane R."'
Search Results
2. Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes.
- Author
-
Kowalczyk, Tim, Yost, Shane R., and Voorhis, Troy Van
- Subjects
- *
DENSITY functionals , *ELECTRONIC excitation , *ORGANIC dyes , *SELF-consistent field theory , *APPROXIMATION theory , *SOLAR cells , *SIMULATION methods & models - Abstract
This paper assesses the accuracy of the ΔSCF method for computing low-lying HOMO→LUMO transitions in organic dye molecules. For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is observed for time-dependent density functional theory and for ΔSCF density functional theory. In light of this performance, we reconsider the ad hoc ΔSCF prescription and demonstrate that it formally obtains the exact stationary density within the adiabatic approximation, partially justifying its use. The relative merits and future prospects of ΔSCF for simulating individual excited states are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
3. Singlet fission efficiency in tetracene-based organic solar cells.
- Author
-
Wu, Tony C., Thompson, Nicholas J., Congreve, Daniel N., Hontz, Eric, Yost, Shane R., Van Voorhis, Troy, and Baldo, Marc A.
- Subjects
SOLAR cells ,NUCLEAR fission ,POLYCYCLIC aromatic hydrocarbons ,EXCITON theory ,PHOTOCURRENTS ,MAGNETIC fields - Abstract
Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153%±5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127%±18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
4. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states.
- Author
-
Yost, Shane R., Kowalczyk, Tim, and Van Voorhis, Troy
- Subjects
- *
HARTREE-Fock approximation , *GROUND state (Quantum mechanics) , *EXCITED states , *HAMILTONIAN systems , *HYDROGEN fluoride , *CHARGE exchange , *WAVE functions - Abstract
In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Mo\ller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as Nocc2Nvirt3. Unlike most active space methods, ΔSCF(2) treats the ground and excited state determinants even-handedly. We apply ΔSCF(2) to the H2, hydrogen fluoride, and H4 systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
5. Highly efficient, dual state emission from an organic semiconductor.
- Author
-
Reineke, Sebastian, Seidler, Nico, Yost, Shane R., Prins, Ferry, Tisdale, William A., and Baldo, Marc A.
- Subjects
FLUORESCENCE ,PHOSPHORESCENCE ,ORGANIC semiconductors ,OPTICAL sensors ,OPTICAL attenuators ,EXCITON theory ,ENERGY transfer - Abstract
We report highly efficient, simultaneous fluorescence and phosphorescence (74% yield) at room temperature from a single molecule ensemble of (BzP)PB [N,N′-bis(4-benzoyl-phenyl)-N,N′-diphenyl-benzidine] dispersed into a polymer host. The slow phosphorescence (208 ms lifetime) is very efficient (50%) at room temperature and only possible because the non-radiative rate for the triplet state is extremely low (2.4 × 100 s-1). The ability of an organic molecule to function as an efficient dual state emitter at room temperature is unusual and enables a wide range of applications including the use as broadband down-conversion emitters, optical sensors and attenuators, exciton probes, and spin-independent intermediates for Förster resonant energy transfer. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
6. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package.
- Author
-
Epifanovsky E, Gilbert ATB, Feng X, Lee J, Mao Y, Mardirossian N, Pokhilko P, White AF, Coons MP, Dempwolff AL, Gan Z, Hait D, Horn PR, Jacobson LD, Kaliman I, Kussmann J, Lange AW, Lao KU, Levine DS, Liu J, McKenzie SC, Morrison AF, Nanda KD, Plasser F, Rehn DR, Vidal ML, You ZQ, Zhu Y, Alam B, Albrecht BJ, Aldossary A, Alguire E, Andersen JH, Athavale V, Barton D, Begam K, Behn A, Bellonzi N, Bernard YA, Berquist EJ, Burton HGA, Carreras A, Carter-Fenk K, Chakraborty R, Chien AD, Closser KD, Cofer-Shabica V, Dasgupta S, de Wergifosse M, Deng J, Diedenhofen M, Do H, Ehlert S, Fang PT, Fatehi S, Feng Q, Friedhoff T, Gayvert J, Ge Q, Gidofalvi G, Goldey M, Gomes J, González-Espinoza CE, Gulania S, Gunina AO, Hanson-Heine MWD, Harbach PHP, Hauser A, Herbst MF, Hernández Vera M, Hodecker M, Holden ZC, Houck S, Huang X, Hui K, Huynh BC, Ivanov M, Jász Á, Ji H, Jiang H, Kaduk B, Kähler S, Khistyaev K, Kim J, Kis G, Klunzinger P, Koczor-Benda Z, Koh JH, Kosenkov D, Koulias L, Kowalczyk T, Krauter CM, Kue K, Kunitsa A, Kus T, Ladjánszki I, Landau A, Lawler KV, Lefrancois D, Lehtola S, Li RR, Li YP, Liang J, Liebenthal M, Lin HH, Lin YS, Liu F, Liu KY, Loipersberger M, Luenser A, Manjanath A, Manohar P, Mansoor E, Manzer SF, Mao SP, Marenich AV, Markovich T, Mason S, Maurer SA, McLaughlin PF, Menger MFSJ, Mewes JM, Mewes SA, Morgante P, Mullinax JW, Oosterbaan KJ, Paran G, Paul AC, Paul SK, Pavošević F, Pei Z, Prager S, Proynov EI, Rák Á, Ramos-Cordoba E, Rana B, Rask AE, Rettig A, Richard RM, Rob F, Rossomme E, Scheele T, Scheurer M, Schneider M, Sergueev N, Sharada SM, Skomorowski W, Small DW, Stein CJ, Su YC, Sundstrom EJ, Tao Z, Thirman J, Tornai GJ, Tsuchimochi T, Tubman NM, Veccham SP, Vydrov O, Wenzel J, Witte J, Yamada A, Yao K, Yeganeh S, Yost SR, Zech A, Zhang IY, Zhang X, Zhang Y, Zuev D, Aspuru-Guzik A, Bell AT, Besley NA, Bravaya KB, Brooks BR, Casanova D, Chai JD, Coriani S, Cramer CJ, Cserey G, DePrince AE 3rd, DiStasio RA Jr, Dreuw A, Dunietz BD, Furlani TR, Goddard WA 3rd, Hammes-Schiffer S, Head-Gordon T, Hehre WJ, Hsu CP, Jagau TC, Jung Y, Klamt A, Kong J, Lambrecht DS, Liang W, Mayhall NJ, McCurdy CW, Neaton JB, Ochsenfeld C, Parkhill JA, Peverati R, Rassolov VA, Shao Y, Slipchenko LV, Stauch T, Steele RP, Subotnik JE, Thom AJW, Tkatchenko A, Truhlar DG, Van Voorhis T, Wesolowski TA, Whaley KB, Woodcock HL 3rd, Zimmerman PM, Faraji S, Gill PMW, Head-Gordon M, Herbert JM, and Krylov AI
- Abstract
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.