1. Few-femtosecond electronic and structural rearrangements of CH4+ driven by the Jahn–Teller effect.
- Author
-
Zinchenko, Kristina S., Ardana-Lamas, Fernando, Lanfaloni, Valentina Utrio, Monahan, Nicholas, Seidu, Issaka, Schuurman, Michael S., Neville, Simon P., and Wörner, Hans Jakob
- Subjects
JAHN-Teller effect ,PROPERTIES of matter ,WAREHOUSES ,CHEMICAL properties - Abstract
The Jahn–Teller effect (JTE) is central to the understanding of the physical and chemical properties of a broad variety of molecules and materials. Whereas the manifestations of the JTE in stationary properties of matter are relatively well studied, the study of JTE-induced dynamics is still in its infancy, largely owing to its ultrafast and non-adiabatic nature. For example, the time scales reported for the distortion of CH 4 + from the initial T d geometry to a nominal C 2 v relaxed structure range from 1.85 fs over 10 ± 2 fs to 20 ± 7 fs. Here, by combining element-specific attosecond transient-absorption spectroscopy and quantum-dynamics simulations, we show that the initial electronic relaxation occurs within 5 fs and that the subsequent nuclear dynamics are dominated by the Q
2 scissoring and Q1 symmetric stretching modes, which dephase in 41 ± 10 fs and 13 ± 3 fs, respectively. Significant structural relaxation is found to take place only along the e-symmetry Q2 mode. These results demonstrate that CH 4 + created by ionization of CH 4 is best thought of as a highly fluxional species that possesses a long-time-averaged vibrational distribution centered around a D 2 d structure. The methods demonstrated in our work provide guidelines for the understanding of Jahn–Teller driven non-adiabatic dynamics in other more complex systems. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF