1. Spatially resolved diagnostics for optimization of large ion beam sources.
- Author
-
Serianni G, Sartori E, Agnello R, Agostinetti P, Agostini M, Barbisan M, Brombin M, Candeloro V, Dalla Palma M, Delogu R, De Muri M, Fadone M, Mario I, Patton T, Pimazzoni A, Poggi C, Pouradier-Duteil B, Segalini B, Shepherd A, Spolaore M, Taliercio C, Ugoletti M, Veltri P, Zaniol B, and Pasqualotto R
- Abstract
Giant negative ion sources for neutral beam injectors deliver huge negative ion currents, thanks to their multi-beamlet configuration. As the single-beamlet optics defines the transmission losses along the beamline, the extraction of a similar current for all beamlets is extremely desirable, in order to facilitate the beam source operation (i.e., around perveance match). This Review investigates the correlation between the vertical profile of beam intensity and the vertical profiles of plasma properties at the extraction region of the source, focusing on the influence of increasing cesium injection. Only by the combined use of all available source diagnostics, described in this Review, can beam features on the scale of the non-uniformities be investigated with a sufficient space resolution. At RF power of 50 kW/driver, with intermediate bias currents and a filter field of 2.4 mT, it is found that the central part of the four vertical beam segments exhibits comparable plasma density and beamlet currents; at the edges of the central segments, both the beam and electron density appear to decrease (probably maintaining fixed electron-to-ion ratio); at the bottom of the source, an increase of cesium injection can compensate for the vertical drifts that cause a much higher presence of electrons and a lower amount of negative ions.
- Published
- 2022
- Full Text
- View/download PDF