1. Synthesis, Substitution Kinetics, and Electrochemistry of the First Tetrathiafulvalene-Containing β-Diketonato Complexes of Rhodium(I)
- Author
-
Dominique Lorcy, Nathalie Bellec, Eleanor Fourie, Jannie C. Swarts, Department of Chemistry, University of the Free State [South Africa] (UFS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of the Free State [South Africa], Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Stereochemistry ,Kinetics ,chemistry.chemical_element ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Medicinal chemistry ,Rhodium ,Inorganic Chemistry ,chemistry.chemical_compound ,Reaction rate constant ,Heterocyclic Compounds ,Organometallic Compounds ,Physical and Theoretical Chemistry ,Substitution reaction ,Molecular Structure ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Ligand ,Ketones ,3. Good health ,0104 chemical sciences ,chemistry ,Tetrathiafulvalene ,Cyclooctadiene - Abstract
International audience; The synthesis of the first rhodium(I) cyclooctadiene complexes containing tetrathiafulvalene (TTF) groups substituted on a beta-diketonato ligand in either the methine position (3 position), [Rh(cod)(H(3)CCOC{S-TTF-(MeS)(3)}COCH(3))] (3), or terminal position (1 position), [Rh(cod){(Me(3)-TTF)COCHCOCH(3)}] (4), is reported. The effect of the beta-diketonato substitution position on the kinetics of substitution of the TTF-containing beta-diketonato ligand with 1,10-phenanthroline from 3 and 4 to give [Rh(cod)(phen)](+), as well as on the electrochemical properties of 3 and 4, was investigated. Second-order substitution rate constants, k(2), in methanol were found to be almost independent of the substitution position, with 4 (k(2) = 2.09 x 10(3) dm(3) mol(-1) s(-1)) reacting only about twice as fast as 3. An appreciable solvent pathway in the substitution mechanism was only observed for 4 with k(s) = 42 s(-1). A complete mechanism for both substitution reactions is proposed. The electrochemistry of 3 and 4 in CH(2)Cl(2)/0.10 mol dm(-3) [N((n)Bu)(4)][B(C(6)F(5))(4)] showed three redox processes. Two of these were electrochemically reversible and are associated with the redox-active TTF group. For 3, TTF-based formal reduction potentials, E degrees', were observed at 0.082 and 0.659 V vs Fc/Fc(+), respectively; 4 exhibited them at -0.172 and 0.703 V vs Fc/Fc(+) at a scan rate of 100 mV s(-1). A Rh(II)/Rh(I) redox couple was observed at E degrees' = 0.89 V for 3, after both TTF oxidations were completed, and at 0.51 V for 4; this is between the two TTF redox processes. The more difficult oxidation of the Rh(I) center of 3 indicates more effective electron-withdrawing from the Rh(I) center to the first-oxidized TTF(+) group at the methine position of the beta-diketonato ligand of 3(+) than to the terminal-substituted TTF(+) group in 4(+).
- Published
- 2010
- Full Text
- View/download PDF