1. High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles
- Author
-
Andrew Z. Wang, Rod Balhorn, Kin Man Au, Monique Cosman Balhorn, and Steven I. Park
- Subjects
010405 organic chemistry ,Chemistry ,General Chemical Engineering ,Cell ,technology, industry, and agriculture ,Cancer ,General Chemistry ,010402 general chemistry ,medicine.disease ,01 natural sciences ,0104 chemical sciences ,3. Good health ,Cell killing ,medicine.anatomical_structure ,In vivo ,Cancer cell ,medicine ,Cancer research ,Cytotoxic T cell ,Immunogenic cell death ,Doxorubicin ,QD1-999 ,Research Article ,medicine.drug - Abstract
Non-Hodgkin lymphoma is one of the most common types of cancer. Relapsed and refractory diseases are still common and remain significant challenges as the majority of these patients eventually succumb to the disease. Herein, we report a translatable concurrent chemo-immuno-radiotherapy (CIRT) strategy that utilizes fully synthetic antibody mimic Selective High-Affinity Ligand (SHAL)-functionalized doxorubicin-encapsulated nanoparticles (Dox NPs) for the treatment of human leukocyte antigen-D related (HLA-DR) antigen-overexpressed tumors. We demonstrated that our tailor-made antibody mimic-functionalized NPs bound selectively to different HLA-DR-overexpressed human lymphoma cells, cross-linked the cell surface HLA-DR, and triggered the internalization of NPs. In addition to the direct cytotoxic effect by Dox, the internalized NPs then released the encapsulated Dox and upregulated the HLA-DR expression of the surviving cells, which further augmented immunogenic cell death (ICD). The released Dox not only promotes ICD but also sensitizes the cancer cells to irradiation by inducing cell cycle arrest and preventing the repair of DNA damage. In vivo biodistribution and toxicity studies confirm that the targeted NPs enhanced tumor uptake and reduced systemic toxicities of Dox. Our comprehensive in vivo anticancer efficacy studies using lymphoma xenograft tumor models show that the antibody-mimic functional NPs effectively inhibit tumor growth and sensitize the cancer cells for concurrent CIRT treatment without incurring significant side effects. With an appropriate treatment schedule, the SHAL-functionalized Dox NPs enhanced the cell killing efficiency of radiotherapy by more than 100% and eradicated more than 80% of the lymphoma tumors., Antibody mimic Selective High-Affinity Ligand-functionalized doxorubicin-encapsulated nanoparticles have been engineered for concurrent chemo-immuno-radiotherapy of hematological cancer.
- Published
- 2018