1. Tuning Metal-to-Metal Charge Transfer of Mixed-Valence Complexes Containing Ferrocenylpyridine and Rutheniumammines via Solvent Donicity and Substituent Effects
- Author
-
Yuan Jang Chen, She Jing Lin, Chih-Cheng Tai, Ching-Hong Kao, and Keh Shin Kwan
- Subjects
Valence (chemistry) ,Chemistry ,Substituent ,chemistry.chemical_element ,Activation energy ,Acceptor ,Ruthenium ,Inorganic Chemistry ,Metal ,Electron transfer ,chemistry.chemical_compound ,visual_art ,Donor number ,visual_art.visual_art_medium ,Physical chemistry ,Physical and Theoretical Chemistry - Abstract
A homogeneous series of heterobimetallic complexes of [R-Fc(4-py)Ru(NH3)5](PF6)2 (R = H, Et, Br, acetyl; Fc(4-py) = 4-ferrocenylpyridine) have been prepared and characterized. The mixed-valence species generated in situ using ferrocenium hexafluorophosphate as the oxidant show class II behavior, and the oxidized sites are ruthenium centered. deltaE(1/2), E(1/2)(Fe(III)/Fe(II)) - E(1/2)(Ru(III)/Ru(II)), an upper limit for deltaGo that is an energetic difference between the donor and acceptor sites, changes sharply and linearly with Gutmann solvent donor number (DN) and Hammett substituent constants (sigma). The solvent-dependent and substituent-dependent intervalence transfer bands were found to vary almost exclusively with deltaE(1/2). The activation energy for the optical electron transfer versus deltaE(1/2) plot yields a common nuclear reorganization energy (lambda) of 0.74 +/- 0.04 eV for this series. The equation that allows one to incorporate the effect of both solvent donicity and substituents on optical electron transfer is Eop = lambda + deltaGo, where deltaGo = (deltaGo)intrinsic + (deltaGo)solvent donicity + (deltaGo)substituent effect (deltaGo )intinnsic with a numerical value of 0.083 +/- 0.045 eV was obtained from the intercept of the deltaE(1/2) of [H-Fc(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot. (deltaGo)solvent donicity was obtained from the average slopes of the deltaE(1/2) of [R-Fc-(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot, and (deltaGo)substituent effect was obtained from the average slopes of the corresponding deltaE(1/2) versus sigma plot. The empirical equation allows one to finely tune Eop of this series to Eop = 0.82 + 0.019(DN) + 0.44sigma eV at 298 K, and the discrepancy between the calculated and experimental data is less than 6%.
- Published
- 2000