1. Hydrotalcite Colloidal Stability and Interactions with Uranium(VI) at Neutral to Alkaline pH
- Author
-
Chris Foster, Samuel Shaw, Thomas S. Neill, Nick Bryan, Nick Sherriff, Louise S. Natrajan, Hannah Wilson, Laura Lopez-Odriozola, Bruce Rigby, Sarah J. Haigh, Yi-Chao Zou, Robert Harrison, and Katherine Morris
- Subjects
Electrochemistry ,General Materials Science ,Surfaces and Interfaces ,Condensed Matter Physics ,Spectroscopy - Abstract
In the UK, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and it’s interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7 – 11.5 and with variable U(VI) surface loadings (0.01 – 1 wt%). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentration. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g. Mg[UO2(CO3)3]2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding uranium behaviour in environments where hydrotalcite and other LDHs may be present.
- Published
- 2022
- Full Text
- View/download PDF