Oysters are an ecologically important group of filter-feeders, and a valuable toxicology model for characterizing the potential impacts of nanoparticles to marine organisms. Fullerene (C60) exposure studies with oysters, Crassostrea virginica, were conducted with a variety of biological levels, e.g., developmental studies with embryos, whole organism exposures with adults, and isolated hepatopancreas cells. Significant effects on embryonic development and lysosomal destabilization were observed at concentrations as low as 10 ppb. Moreover, based on our extensive experience with the lysosomal assay, the lysosomal destabilization rates at fullerene concentrationsor = 100 ppb were regarded as biologically significant as they are associated with reproductive failure. Interestingly, there was no significant increase in lipid peroxidation levels in hepatopancreas tissues. Oyster hepatopancreas tissues are composed of lysosomal rich cells, and confocal microscopy studies indicated thatthe fullerene particles readily accumulated inside hepatopancreas cells within 4 h. Fullerene aggregates tended to be localized and concentrated into lysosomes. The microscopic work in conjunction with the lysosomal function assays supports the premise that endocytotic and lysosomal pathways may be major targets of fullerenes and other nanoparticles. Nanoparticles that affect normal lysosomal and autophagic processes may contribute to long-term, chronic problems for individual health as well as ecosystem health.