1. Nitrosylated Iron−Thiolate−Sulfinate Complexes with {Fe(NO)}6/7 Electronic Cores: Relevance to the Transformation between the Active and Inactive NO-Bound Forms of Iron-Containing Nitrile Hydratases
- Author
-
Jo-Lu Hsu, Chien-Hong Chen, Wen-Feng Liaw, Chien-Ming Lee, Gene-Hsiang Lee, and Hao-Wen Chen
- Subjects
Models, Molecular ,Molecular Structure ,Sulfur Compounds ,Nitrile ,Chemistry ,Stereochemistry ,Photodissociation ,chemistry.chemical_element ,Oxidation reduction ,Nitric Oxide ,Sulfur ,Medicinal chemistry ,Redox ,Inorganic Chemistry ,chemistry.chemical_compound ,Models, Chemical ,Proton NMR ,Moiety ,Molecule ,Physical and Theoretical Chemistry ,Oxidation-Reduction ,Hydro-Lyases ,Iron Compounds - Abstract
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively.
- Published
- 2005