1. Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial
- Author
-
Ziyi Hu, Wangbei Cao, Liyin Shen, Ziyang Sun, Kang Yu, Qinchao Zhu, Tanchen Ren, Liwen Zhang, Houwei Zheng, Changyou Gao, Yong He, Chengchen Guo, Yang Zhu, and Daxi Ren
- Subjects
Milk ,Whey Proteins ,Animals ,Biocompatible Materials ,Hydrogels ,General Materials Science ,Milk Proteins - Abstract
There are limited naturally derived protein biomaterials for the available medical implants. High cost, low yield, and batch-to-batch inconsistency, as well as intrinsically differing bioactivity in some of the proteins, make them less beneficial as common implant materials compared to their synthetic counterparts. Here, we present a milk-derived whey protein isolate (WPI) as a new kind of natural protein-based biomaterial for medical implants. The WPI was methacrylated at 100 g bench scale,95% conversion, and 90% yield to generate a photo-cross-linkable material. WPI-MA was further processed into injectable hydrogels, monodispersed microspheres, and patterned scaffolds with photo-cross-linking-based advanced processing methods including microfluidics and 3D printing. In vivo evaluation of the WPI-MA hydrogels showed promising biocompatibility and degradability. Intramyocardial implantation of injectable WPI-MA hydrogels in a model of myocardial infarction attenuated the pathological changes in the left ventricle. Our results indicate a possible therapeutic value of WPI-based biomaterials and give rise to a potential collaboration between the dairy industry and the production of medical therapeutics.
- Published
- 2022
- Full Text
- View/download PDF