1. Differences between Platelets Derived from Neonatal Cord Blood and Adult Peripheral Blood Assessed by Mass Spectrometry.
- Author
-
Stokhuijzen E, Koornneef JM, Nota B, van den Eshof BL, van Alphen FPJ, van den Biggelaar M, van der Zwaan C, Kuijk C, Mertens K, Fijnvandraat K, and Meijer AB
- Subjects
- Adult, Collagen metabolism, Female, Humans, Infant, Newborn, Male, Mass Spectrometry, Middle Aged, Platelet Activation genetics, Receptor, PAR-1 metabolism, Receptors, Thrombin metabolism, Transcriptome genetics, Blood Platelets metabolism, Fetal Blood metabolism, Platelet Aggregation genetics, Proteomics
- Abstract
It has been proposed that differences may exist between umbilical cord blood (CB) platelets and adult peripheral blood (APB) platelets, including altered protein levels of the main platelet integrins. We have now compared the protein expression profiles of CB and APB platelets employing a label-free comparative proteomics approach. Aggregation studies showed that CB platelets effectively aggregate in the presence of thromboxane A2 analogue, collagen, and peptide agonists of the proteinase-activated receptors 1 and 4. In agreement with previous studies, higher concentrations of the agonists were required to initiate aggregation in the CB platelets. Mass spectrometry analysis revealed no significant difference in the expression levels of critical platelet receptors like glycoprotein (GP)Ib, GPV, GPIX, and integrin αIIbβ3. This was confirmed using flow cytometry-based approaches. Gene ontology enrichment analysis revealed that elevated proteins in CB platelets were in particular enriched in proteins contributing to mitochondrial energy metabolism processes. The reduced proteins were enriched in proteins involved in, among others, platelet degranulation and activation. In conclusion, this study reveals that the CB and APB platelets are distinct. In particular, changes were observed for proteins that belong to metabolic and energy generation processes and not for the critical adhesive platelet integrins and glycoproteins.
- Published
- 2017
- Full Text
- View/download PDF