1. Development of a Rapid and Sensitive CasRx-Based Diagnostic Assay for SARS-CoV-2.
- Author
-
Brogan DJ, Chaverra-Rodriguez D, Lin CP, Smidler AL, Yang T, Alcantara LM, Antoshechkin I, Liu J, Raban RR, Belda-Ferre P, Knight R, Komives EA, and Akbari OS
- Subjects
- Humans, Nucleic Acid Amplification Techniques, RNA, Viral, Ruminococcus, COVID-19, SARS-CoV-2
- Abstract
The development of an extensive toolkit for potential point-of-care diagnostics that is expeditiously adaptable to new emerging pathogens is of critical public health importance. Recently, a number of novel CRISPR-based diagnostics have been developed to detect SARS-CoV-2. Herein, we outline the development of an alternative CRISPR nucleic acid diagnostic utilizing a Cas13d ribonuclease derived from Ruminococcus flavefaciens XPD3002 (CasRx) to detect SARS-CoV-2, an approach we term SENSR (sensitive enzymatic nucleic acid sequence reporter) that can detect attomolar concentrations of SARS-CoV-2. We demonstrate 100% sensitivity in patient-derived samples by lateral flow and fluorescence readout with a detection limit of 45 copy/μL. This technology expands the available nucleic acid diagnostic toolkit, which can be adapted to combat future pandemics.
- Published
- 2021
- Full Text
- View/download PDF