8 results on '"Salvi L"'
Search Results
2. A new biarylphosphine ligand for the Pd-catalyzed synthesis of diaryl ethers under mild conditions.
- Author
-
Salvi L, Davis NR, Ali SZ, and Buchwald SL
- Subjects
- Catalysis, Ligands, Molecular Structure, Ethers chemical synthesis, Palladium chemistry, Phosphines chemistry
- Abstract
A new bulky biarylphosphine ligand (L8) has been developed that allows the Pd-catalyzed C-O cross-coupling of a wide range of aryl halides and phenols under milder conditions than previously possible. A direct correlation between the size of the ligand substituents in the 2', 4', and 6' positions of the nonphosphine containing ring and the reactivity of the derived catalyst system was observed. Specifically, the rate of coupling increased with the size of these substituents., (© 2011 American Chemical Society)
- Published
- 2012
- Full Text
- View/download PDF
3. One-pot catalytic enantio- and diastereoselective syntheses of anti-, syn-cis-disubstituted, and syn-vinyl cyclopropyl alcohols.
- Author
-
Kim HY, Salvi L, Carroll PJ, and Walsh PJ
- Subjects
- Catalysis, Stereoisomerism, Substrate Specificity, Alcohols chemical synthesis, Alcohols chemistry, Cyclopropanes chemistry
- Abstract
Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C-C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65-85% yield, 76-93% ee, and > 19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et(3)N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one pot in 60-82% yield, 89-99% ee, and > or = 10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42-70% yield, 88-97% ee, and > 19:1 dr. These one-pot procedures enable the synthesis of a diverse array of cyclopropyl alcohol building blocks with high enantio- and diastereoselectivities.
- Published
- 2010
- Full Text
- View/download PDF
4. Practical catalytic asymmetric synthesis of diaryl-, aryl heteroaryl-, and diheteroarylmethanols.
- Author
-
Salvi L, Kim JG, and Walsh PJ
- Subjects
- Aldehydes chemistry, Azoles chemical synthesis, Azoles chemistry, Bromides chemistry, Catalysis, Epoxy Compounds chemistry, Ferrous Compounds chemistry, Lithium Chloride chemistry, Metallocenes, Naphthalenes chemistry, Organometallic Compounds chemistry, Stereoisomerism, Substrate Specificity, Temperature, Zinc chemistry, Methanol chemical synthesis, Methanol chemistry
- Abstract
Enantioenriched diaryl-, aryl heteroaryl-, and diheteroarylmethanols exhibit important biological and medicinal properties. One-pot catalytic asymmetric syntheses of these compounds beginning from readily available aryl bromides are introduced. Thus, lithium-bromide exchange with commercially available aryl bromides and n-BuLi was followed by salt metathesis with ZnCl(2) to generate ArZnCl. A second equivalent of n-BuLi was added to form the mixed organozinc, ArZnBu. In the presence of enantioenriched amino alcohol-based catalysts, ArZnBu adds to aldehydes to afford essentially racemic diarylmethanols. The low enantioselectivities were attributed to a LiCl-promoted background reaction. To inhibit this background reaction, the chelating diamine TEEDA (tetraethylethylene diamine) was introduced prior to aldehyde addition. Under these conditions, enantioenriched diarylmethanols were obtained with >90% ee. Arylations of enals generated allylic alcohols with 81-90% ee. This procedure was unsuccessful, however, when applied to heteroaryl bromides, which was attributed to decomposition of the heteroaryl lithium under the salt metathesis conditions. To avoid this problem, the metathesis was conducted with EtZnCl, which enabled the salt metathesis to proceed at low temperatures. The resulting EtZn(Ar(Hetero)) intermediates (Ar(Hetero) = 2- and 3-thiophenyl, 2-benzothiophenyl, 3-furyl, and 5-indolyl) were successfully added to aldehydes and heteroaryl aldehydes with enantioselectivities between 81-99%. These are the first examples of catalytic and highly enantioselective syntheses of diheteroarylmethanols. In a similar fashion, ferrocenyl bromide was used to generate FcZnEt and the ferrocenyl group added to benzaldehyde and heteroaromatic aldehydes to form ferrocene-based ligand precursors in 86-95% yield with 96-98% ee. It was also found that the arylation and heteroarylation of enals could be followed by diastereoselective epoxidations to provide epoxy alcohols with high enantio- and diastereoselectivities in a one-pot procedure.
- Published
- 2009
- Full Text
- View/download PDF
5. One-pot multicomponent coupling methods for the synthesis of diastereo- and enantioenriched (Z)-trisubstituted allylic alcohols.
- Author
-
Kerrigan MH, Jeon SJ, Chen YK, Salvi L, Carroll PJ, and Walsh PJ
- Subjects
- Boranes chemistry, Catalysis, Organometallic Compounds chemistry, Stereoisomerism, Zinc chemistry, Alcohols chemical synthesis, Aldehydes chemistry, Alkynes chemistry, Allyl Compounds chemical synthesis
- Abstract
(Z)-trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-alpha,alpha,beta-trisubstituted allylic alcohols. (Z)-trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metalate rearrangement that is followed by a boron-to-zinc transmetalation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed, (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl-protected alpha- and beta-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl-protected alpha-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (-)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. Alpha-ethyl and alpha-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors.
- Published
- 2009
- Full Text
- View/download PDF
6. Highly enantio- and diastereoselective one-pot methods for the synthesis of halocyclopropyl alcohols.
- Author
-
Kim HY, Salvi L, Carroll PJ, and Walsh PJ
- Subjects
- Alcohols chemistry, Alkylation, Halogenation, Magnetic Resonance Spectroscopy, Molecular Structure, Stereoisomerism, Vinyl Compounds chemistry, Alcohols chemical synthesis, Cyclopropanes chemistry
- Abstract
The lack of methods for the stereoselective transfer of functionalized carbenoids is one of the most significant deficiencies of Simmons-Smith cyclopropanation reactions. Outlined herein are one-pot methods for the catalytic asymmetric synthesis of halocyclopropyl alcohols with up to four stereogenic centers from achiral starting materials. The first method involves asymmetric alkyl addition to a conjugated enal to generate an allylic alkoxide followed by tandem diastereoselective iodo-, bromo-, or chlorocyclopropanation to furnish halocyclopropyl alcohols. Enantioselectivities in these processes range from 89-99%, and dr's of >20:1 were achieved with all substrates optimized. The second method consists of an asymmetric vinylation of a saturated or aromatic aldehyde followed by a diastereoselective iodocyclopropanation to produce iodocyclopropyl alcohols with enantioselectivities between 86 and 99% and dr's of >20:1. These complementary methods enable the efficient synthesis of a variety of halocyclopropyl alcohols in one-pot procedures. Preliminary efforts to functionalize iodocyclopropanes involve reaction with an excess of LiCu(n-Bu)(2) to generate the cyclopropyl cuprate. This intermediate can be quenched with allyl bromides to generate the allylated cyclopropyl alcohols without loss of enantio- or diastereoselectivity.
- Published
- 2009
- Full Text
- View/download PDF
7. Catalytic asymmetric generation of (Z)-disubstituted allylic alcohols.
- Author
-
Salvi L, Jeon SJ, Fisher EL, Carroll PJ, and Walsh PJ
- Subjects
- Catalysis, Chromatography, High Pressure Liquid, Chromatography, Thin Layer, Magnetic Resonance Spectroscopy, Propanols chemistry
- Abstract
A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetalation with dialkylzinc reagents generate (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (-)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX-promoted reaction, a series of inhibitors were screened. It was found that 20-30 mol % tetraethylethylenediamine inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity.
- Published
- 2007
- Full Text
- View/download PDF
8. The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.
- Author
-
Staples CR, Ameyibor E, Fu W, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB, and Johnson MK
- Subjects
- Circular Dichroism, Cysteine metabolism, Disulfides metabolism, Dithiothreitol pharmacology, Electron Spin Resonance Spectroscopy, Electron Transport, Ethylmaleimide pharmacology, Ferredoxins metabolism, Ferricyanides pharmacology, Iron chemistry, Iron-Sulfur Proteins metabolism, NADP metabolism, Oxidoreductases metabolism, Spectrophotometry, Spectrum Analysis, Raman, Spinacia oleracea enzymology, Sulfur chemistry, Chloroplasts enzymology, Iron metabolism, Iron-Sulfur Proteins chemistry, Oxidoreductases chemistry, Sulfur metabolism
- Abstract
Thioredoxin reduction in chloroplasts is catalyzed by a unique class of disulfide reductases which use a [2Fe-2S]2+/+ ferredoxin as the electron donor and contain an Fe-S cluster as the sole prosthetic group in addition to the active-site disulfide. The nature, properties, and function of the Fe-S cluster in spinach ferredoxin:thioredoxin reductase (FTR) have been investigated by the combination of UV/visible absorption, variable-temperature magnetic circular dichroism (MCD), EPR, and resonance Raman (RR) spectroscopies. The results indicate the presence of an S = 0 [4Fe-4S]2+ cluster with complete cysteinyl-S coordination that cannot be reduced at potentials down to -650 mV, but can be oxidized by ferricyanide to an S = 1/2 [4Fe-4S]3+ state (g = 2.09, 2.04, 2.02). The midpoint potential for the [4Fe-4S]3+/2+ couple is estimated to be +420 mV (versus NHE). These results argue against a role for the cluster in mediating electron transport from ferredoxin (Em = -420 mV) to the active-site disulfide (Em = -230 mV, n = 2). An alternative role for the cluster in stabilizing the one-electron-reduced intermediate is suggested by parallel spectroscopic studies of a modified form of the enzyme in which one of the cysteines of the active-site dithiol has been alkylated with N-ethylmaleimide (NEM). NEM-modified FTR is paramagnetic as prepared and exhibits a slow relaxing, S = 1/2 EPR signal, g = 2.11, 2.00, 1.98, that is observable without significant broadening up to 150 K. While the relaxation properties are characteristic of a radical species, MCD, RR, and absorption studies indicate at least partial cluster oxidation to the [4Fe-4S]3+ state. Dye-mediated EPR redox titrations indicate a midpoint potential of -210 mV for the one-electron reduction to a diamagnetic state. By analogy with the properties of the ferricyanide-oxidized [4Fe-4S] cluster in Azotobacter vinelandii 7Fe ferredoxin [Hu, Z., Jollie, D., Burgess, B. K., Stephens, P. J., & Münck, E. (1994) Biochemistry 33, 14475-14485], the spectroscopic and redox properties of NEM-modified FTR are interpreted in terms of a [4Fe-4S]2+ cluster covalently attached through a cluster sulfide to a cysteine-based thiyl radical formed on one of the active-site thiols. A mechanistic scheme for FTR is proposed with similarities to that established for the well-characterized NAD(P)H-dependent flavin-containing disulfide oxidoreductases, but involving sequential one-electron redox processes with the role of the [4Fe-4S]2+ cluster being to stabilize the thiyl radical formed by the initial one-electron reduction of the active-site disulfide. The results indicate a new biological role for Fe-S clusters involving both the stabilization of a thiyl radical intermediate and cluster site-specific chemistry involving a bridging sulfide.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.