14 results on '"Park, Jiyun"'
Search Results
2. Compositionally Complex Perovskite Oxides for Solar Thermochemical Water Splitting.
- Author
-
Zhang, Dawei, De Santiago, Héctor A., Xu, Boyuan, Liu, Cijie, Trindell, Jamie A., Li, Wei, Park, Jiyun, Rodriguez, Mark A., Coker, Eric N., Sugar, Joshua D., McDaniel, Anthony H., Lany, Stephan, Ma, Liang, Wang, Yi, Collins, Gregory, Tian, Hanchen, Li, Wenyuan, Qi, Yue, Liu, Xingbo, and Luo, Jian
- Published
- 2023
- Full Text
- View/download PDF
3. Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.
- Author
-
Kumar, Gaurav, Van Cleve, Timothy, Park, Jiyun, van Duin, Adri, Medlin, J. Will, and Janik, Michael J.
- Published
- 2018
- Full Text
- View/download PDF
4. Mechanistic Borderline of One-Step Hydrogen Atom Transfer versus Stepwise Sc3+-Coupled Electron Transfer from Benzyl Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex.
- Author
-
Morimoto, Yuma, Park, Jiyun, Suenobu, Tomoyoshi, Yong-Min Lee, Wonwoo Nam, and Fukuzumi, Shunichi
- Subjects
- *
IRON compounds , *BENZYL alcohol , *ATOM transfer reactions , *HYDROGEN bonding , *CHARGE exchange , *REACTIVITY (Chemistry) , *OXIDATION - Abstract
The rate of oxidation of 2,S-dimethoxybenzyl alcohol (2,5-(MeO)2C6H3CH2OH) by [FeIV(O)(N4Py)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)- methylamine) was enhanced significantly in the presence of Sc(OTf)3 (OTF = trifluoromethanesulfonate) in acetonitrile (e.g., 120-fold acceleration in the presence of Sc3+). Such a remarkable enhancement of the reactivity of [FeIV(O)- (N4Py)]2+ in the presence of Sc3+ was accompanied by the disappearance of a kinetic deuterium isotope effect. The radical cation of 2,5-(MeO)2C6H3CH2OH was detected in the course of the reaction in the presence of Sc3+. The dimerized alcohol and aldehyde were also produced in addition to the monomer aldehyde in the presence of Sc3+. These results indicate that the reaction mechanism is changed from one-step hydrogen atom transfer (HAT) from 2,5-(MeO)2C6H3CH2OH to [FeIV(O)(N4Py)]2+ in the absence of Sc3+ to stepwise Sc3+-coupled electron transfer, followed by proton transfer in the presence of Sc3+. In contrast, neither acceleration of the rate nor the disappearance of the kinetic deuterium isotope effect was observed in the oxidation of benzyl alcohol (C6H5CH2OH) by [FeIV(O)(N4Py)]2+ in the presence of Sc(OTf)3. Moreover, the rate constants determined in the oxidation of various benzyl alcohol derivatives by [FeIV(O)(N4Py)]2+ in the presence of Sc(OTf)3 (10 mM) were compared with those of Sc3+-coupled electron transfer from one-electron reductants to [FeIV(O)(N4Py)]2+ at the same driving force of electron transfer. This comparison revealed that the borderline of the change in the mechanism from HAT to stepwise Sc3+-coupled electron transfer and proton transfer is dependent on the one-electron oxidation potential of benzyl alcohol derivatives (ca. 1.7 V vs SCE). [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
5. Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping.
- Author
-
Liu C, Park J, De Santiago HA, Xu B, Li W, Zhang D, Zhou L, Qi Y, Luo J, and Liu X
- Abstract
Solar-driven thermochemical hydrogen (STCH) production represents a sustainable approach for converting solar energy into hydrogen (H
2 ) as a clean fuel. This technology serves as a crucial feedstock for synthetic fuel production, aligning with the principles of sustainable energy. The efficiency of the conversion process relies on the meticulous tuning of the properties of active materials, mostly commonly perovskite and fluorite oxides. This Review conducts a comprehensive review encompassing experimental, computational, and thermodynamic and kinetic property studies, primarily assessing the utilization of perovskite oxides in two-step thermochemical reactions and identifying essential attributes for future research endeavors. Furthermore, this Review delves into the application of machine learning (ML) and density functional theory (DFT) for predicting and classifying the thermochemical properties of perovskite materials. Through the integration of experimental investigations, computational modeling, and ML methodologies, this Review aspires to expedite the screening and optimization of perovskite oxides, thus enhancing the efficiency of STCH processes. The overarching objective is to propel the advancement and practical integration of STCH systems, contributing significantly to the realization of a sustainable and carbon-neutral energy landscape., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)- Published
- 2024
- Full Text
- View/download PDF
6. Uniform Surface Modification of Li 2 ZnTi 3 O 8 by Liquated Na 2 MoO 4 To Boost Electrochemical Performance.
- Author
-
Yang H, Park J, Kim CS, Xu YH, Zhu HL, Qi YX, Yin L, Li H, Lun N, and Bai YJ
- Abstract
Poor ionic and electronic conductivities are the key issues to affect the electrochemical performance of Li
2 ZnTi3 O8 (LZTO). In view of the water solubility, low melting point, good electrical conductivity, and wettability to LZTO, Na2 MoO4 (NMO) was first selected to modify LZTO via simply mixing LZTO in NMO water solution followed by calcining the dried mixture at 750 °C for 5 h. The electrochemical performance of LZTO could be enhanced by adjusting the content of NMO, and the modified LZTO with 2 wt % NMO exhibited the most excellent rate capabilities (achieving lithiation capacities of 225.1, 207.2, 187.1, and 161.3 mAh g-1 at 200, 400, 800, and 1600 mA g-1 , respectively) as well as outstanding long-term cycling stability (delivering a lithiation capacity of 229.0 mAh g-1 for 400 cycles at 500 mA g-1 ). Structure and composition characterizations together with electrochemical impedance spectra analysis demonstrate that the molten NMO at the sintering temperature of 750 °C is beneficial to diffuse into the LZTO lattices near the surface of LZTO particles to yield uniform modification layer, simultaneously ameliorating the electronic and ionic conductivities of LZTO, and thus is responsible for the enhanced electrochemical performance of LZTO. First-principles calculations further verify the substitution of Mo6+ for Zn2+ to realize doping in LZTO. The work provides a new route for designing uniform surface modification at low temperature, and the modification by NMO could be extended to other electrode materials to enhance the electrochemical performance.- Published
- 2017
- Full Text
- View/download PDF
7. Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid.
- Author
-
Park J, Lee YM, Ohkubo K, Nam W, and Fukuzumi S
- Subjects
- Electron Transport, Heme chemistry, Protons, Epoxy Compounds chemistry, Iron Compounds chemistry, Mesylates chemistry, Styrene chemistry
- Abstract
Styrene derivatives are not oxidized by [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in acetonitrile at 298 K, whereas epoxidation of styrene derivatives by the iron(IV)-oxo complex occurs efficiently in the presence of triflic acid (HOTf) via proton-coupled electron transfer (PCET) from styrene derivatives to the diprotonated species of [(N4Py)Fe(IV)(O)](2+) with HOTf. Logarithms of the first-order rate constants of HOTf-promoted expoxidation of styrene derivatives with [(N4Py)Fe(IV)(O)](2+) and PCET from electron donors to [(N4Py)Fe(IV)(O)](2+) in the precursor complexes exhibit a remarkably unified correlation with the driving force of PCET in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes are taken into account. The same PCET driving force dependence is obtained for the first-order rate constants of HOTf-promoted oxygen atom transfer from thioanisols to [(N4Py)Fe(IV)(O)](2+) and HOTf-promoted hydrogen atom transfer from toluene derivatives to [(N4Py)Fe(IV)(O)](2+) in the precursor complexes. Thus, HOTf-promoted epoxidation of styrene derivatives by [(N4Py)Fe(IV)(O)](2+) proceeds via the rate-determining electron transfer from styrene derivatives to the diprotonated species of [(N4Py)Fe(IV)(O)](2+), as shown in the reactions of HOTf-promoted oxygen atom transfer from thioanisols to [(N4Py)Fe(IV)(O)](2+) and HOTf-promoted hydrogen atom transfer from toluene derivatives to [(N4Py)Fe(IV)(O)](2+).
- Published
- 2015
- Full Text
- View/download PDF
8. Unified view of oxidative C-H bond cleavage and sulfoxidation by a nonheme iron(IV)-oxo complex via Lewis acid-promoted electron transfer.
- Author
-
Park J, Morimoto Y, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Kinetics, Oxidation-Reduction, Toluene chemistry, Electron Transport, Lewis Acids chemistry, Nonheme Iron Proteins chemistry, Sulfoxides chemistry
- Abstract
Oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), were remarkably enhanced by the presence of triflic acid (HOTf) and Sc(OTf)3 in acetonitrile at 298 K. All the logarithms of the observed second-order rate constants of both the oxidative C-H bond cleavage and sulfoxidation reactions exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes between PCET and MCET were taken into account, respectively. Thus, the mechanisms of both the oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by [(N4Py)Fe(IV)(O)](2+) in the presence of HOTf and Sc(OTf)3 have been unified as the rate-determining electron transfer, which is coupled with binding of [(N4Py)Fe(IV)(O)](2+) by proton (PCET) and Sc(OTf)3 (MCET). There was no deuterium kinetic isotope effect (KIE) on the oxidative C-H bond cleavage of toluene via the PCET pathway, whereas a large KIE value was observed with Sc(OTf)3, which exhibited no acceleration of the oxidative C-H bond cleavage of toluene. When HOTf was replaced by DOTf, an inverse KIE (0.4) was observed for PCET from both toluene and [Ru(II)(bpy)3](2+) (bpy =2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+). The PCET and MCET reactivities of [(N4Py)Fe(IV)(O)](2+) with Brønsted acids and various metal triflates have also been unified as a single correlation with a quantitative measure of the Lewis acidity.
- Published
- 2014
- Full Text
- View/download PDF
9. Brønsted acid-promoted C-H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(IV)-oxo complex with no kinetic isotope effect.
- Author
-
Park J, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Electron Transport, Kinetics, Oxidation-Reduction, Perchlorates chemistry, Temperature, Ferric Compounds chemistry, Iron Compounds chemistry, Organometallic Compounds chemistry, Protons, Toluene chemistry
- Abstract
The reactivity of a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was markedly enhanced by perchloric acid (70% HClO4) in the oxidation of toluene derivatives. Toluene, which has a high one-electron oxidation potential (Eox = 2.20 V vs SCE), was oxidized by [(N4Py)Fe(IV)(O)](2+) in the presence of HClO4 in acetonitrile (MeCN) to yield a stoichiometric amount of benzyl alcohol, in which [(N4Py)Fe(IV)(O)](2+) was reduced to [(N4Py)Fe(III)(OH2)](3+). The second-order rate constant (kobs) of the oxidation of toluene derivatives by [(N4Py)Fe(IV)(O)](2+) increased with increasing concentration of HClO4, showing the first-order dependence on [HClO4]. A significant kinetic isotope effect (KIE) was observed when mesitylene was replaced by mesitylene-d12 in the oxidation with [(N4Py)Fe(IV)(O)](2+) in the absence of HClO4 in MeCN at 298 K. The KIE value drastically decreased from KIE = 31 in the absence of HClO4 to KIE = 1.0 with increasing concentration of HClO4, accompanied by the large acceleration of the oxidation rate. The absence of KIE suggests that electron transfer from a toluene derivative to the protonated iron(IV)-oxo complex ([(N4Py)Fe(IV)(OH)](3+)) is the rate-determining step in the acid-promoted oxidation reaction. The detailed kinetic analysis in light of the Marcus theory of electron transfer has revealed that the acid-promoted C-H bond cleavage proceeds via the rate-determining electron transfer from toluene derivatives to [(N4Py)Fe(IV)(OH)](3+) through formation of strong precursor complexes between toluene derivatives and [(N4Py)Fe(IV)(OH)](3+).
- Published
- 2013
- Full Text
- View/download PDF
10. Mechanistic borderline of one-step hydrogen atom transfer versus stepwise Sc(3+)-coupled electron transfer from benzyl alcohol derivatives to a non-heme iron(IV)-oxo complex.
- Author
-
Morimoto Y, Park J, Suenobu T, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Electron Transport, Oxidation-Reduction, Benzyl Alcohol chemistry, Hydrogen chemistry, Iron Compounds chemistry, Oxygen chemistry, Scandium chemistry
- Abstract
The rate of oxidation of 2,5-dimethoxybenzyl alcohol (2,5-(MeO)(2)C(6)H(3)CH(2)OH) by [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) was enhanced significantly in the presence of Sc(OTf)(3) (OTf(-) = trifluoromethanesulfonate) in acetonitrile (e.g., 120-fold acceleration in the presence of Sc(3+)). Such a remarkable enhancement of the reactivity of [Fe(IV)(O)(N4Py)](2+) in the presence of Sc(3+) was accompanied by the disappearance of a kinetic deuterium isotope effect. The radical cation of 2,5-(MeO)(2)C(6)H(3)CH(2)OH was detected in the course of the reaction in the presence of Sc(3+). The dimerized alcohol and aldehyde were also produced in addition to the monomer aldehyde in the presence of Sc(3+). These results indicate that the reaction mechanism is changed from one-step hydrogen atom transfer (HAT) from 2,5-(MeO)(2)C(6)H(3)CH(2)OH to [Fe(IV)(O)(N4Py)](2+) in the absence of Sc(3+) to stepwise Sc(3+)-coupled electron transfer, followed by proton transfer in the presence of Sc(3+). In contrast, neither acceleration of the rate nor the disappearance of the kinetic deuterium isotope effect was observed in the oxidation of benzyl alcohol (C(6)H(5)CH(2)OH) by [Fe(IV)(O)(N4Py)](2+) in the presence of Sc(OTf)(3). Moreover, the rate constants determined in the oxidation of various benzyl alcohol derivatives by [Fe(IV)(O)(N4Py)](2+) in the presence of Sc(OTf)(3) (10 mM) were compared with those of Sc(3+)-coupled electron transfer from one-electron reductants to [Fe(IV)(O)(N4Py)](2+) at the same driving force of electron transfer. This comparison revealed that the borderline of the change in the mechanism from HAT to stepwise Sc(3+)-coupled electron transfer and proton transfer is dependent on the one-electron oxidation potential of benzyl alcohol derivatives (ca. 1.7 V vs SCE).
- Published
- 2012
- Full Text
- View/download PDF
11. Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)-oxo complex.
- Author
-
Park J, Morimoto Y, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Electron Transport, Molecular Structure, Iron Compounds chemistry, Oxygen chemistry, Protons
- Abstract
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET., (© 2012 American Chemical Society)
- Published
- 2012
- Full Text
- View/download PDF
12. Scandium ion-enhanced oxidative dimerization and N-demethylation of N,N-dimethylanilines by a non-heme iron(IV)-oxo complex.
- Author
-
Park J, Morimoto Y, Lee YM, You Y, Nam W, and Fukuzumi S
- Subjects
- Dimerization, Methylation, Oxidation-Reduction, Oxygen chemistry, Aniline Compounds chemistry, Iron Compounds chemistry, Scandium chemistry
- Abstract
Oxidative dimerization of N,N-dimethylaniline (DMA) occurs with a nonheme iron(IV)-oxo complex, [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), to yield the corresponding dimer, tetramethylbenzidine (TMB), in acetonitrile. The rate of the oxidative dimerization of DMA by [Fe(IV)(O)(N4Py)](2+) is markedly enhanced by the presence of scandium triflate, Sc(OTf)(3) (OTf = CF(3)SO(3)(-)), when TMB is further oxidized to the radical cation (TMB(•+)). In contrast, we have observed the oxidative N-demethylation with para-substituted DMA substrates, since the position of the C-C bond formation to yield the dimer is blocked. The rate of the oxidative N-demethylation of para-substituted DMA by [Fe(IV)(O)(N4Py)](2+) is also markedly enhanced by the presence of Sc(OTf)(3). In the case of para-substituted DMA derivatives with electron-donating substituents, radical cations of DMA derivatives are initially formed by Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), giving demethylated products. Binding of Sc(3+) to [Fe(IV)(O)(N4Py)](2+) enhances the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), whereas binding of Sc(3+) to DMA derivatives retards the electron-transfer reaction. The complicated kinetics of the Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+) are analyzed by competition between binding of Sc(3+) to DMA derivatives and to [Fe(IV)(O)(N4Py)](2+). The binding constants of Sc(3+) to DMA derivatives increase with the increase of the electron-donating ability of the para-substituent. The rate constants of Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+), which are estimated from the binding constants of Sc(3+) to DMA derivatives, agree well with those predicted from the driving force dependence of the rate constants of Sc(3+) ion-coupled electron transfer from one-electron reductants to [Fe(IV)(O)(N4Py)](2+). Thus, oxidative dimerization of DMA and N-demethylation of para-substituted DMA derivatives proceed via Sc(3+) ion-coupled electron transfer from DMA derivatives to [Fe(IV)(O)(N4Py)](2+).
- Published
- 2011
- Full Text
- View/download PDF
13. Metal ion effect on the switch of mechanism from direct oxygen transfer to metal ion-coupled electron transfer in the sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex.
- Author
-
Park J, Morimoto Y, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Electron Transport, Heme chemistry, Safrole chemistry, Spectrophotometry, Ultraviolet, Iron chemistry, Organometallic Compounds chemistry, Oxygen chemistry, Safrole analogs & derivatives, Sulfides chemistry
- Abstract
The mechanism of sulfoxidation of thioaniosoles by a non-heme iron(IV)-oxo complex is switched from direct oxygen transfer to metal ion-coupled electron transfer by the presence of Sc(3+). The switch in the sulfoxidation mechanism is dependent on the one-electron oxidation potentials of thioanisoles. The rate of sulfoxidation is accelerated as much as 10(2)-fold by the addition of Sc(3+)., (© 2011 American Chemical Society)
- Published
- 2011
- Full Text
- View/download PDF
14. Metal ion-coupled electron transfer of a nonheme oxoiron(IV) complex: remarkable enhancement of electron-transfer rates by Sc3+.
- Author
-
Morimoto Y, Kotani H, Park J, Lee YM, Nam W, and Fukuzumi S
- Subjects
- Electron Spin Resonance Spectroscopy, Electron Transport, Heme chemistry, Iron Compounds chemistry, Metals chemistry, Scandium chemistry
- Abstract
Rates of electron transfer from a series of one-electron reductants to a nonheme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+), are enhanced as much as 10(8)-fold by addition of metal ions such as Sc(3+), Zn(2+), Mg(2+), and Ca(2+); the metal ion effect follows the Lewis acidity of metal ions. The one-electron reduction potential of [(N4Py)Fe(IV)(O)](2+) is shifted to a positive direction by 0.84 V in the presence of Sc(3+) ion (0.20 M).
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.