1. Melt-Fabricated Photoreactive Block Copolymer Micelles as Building Blocks for Tunable Elastomeric Hydrogels
- Author
-
René P. M. Lafleur, Travis S. Bailey, Nabila A. Huq, and Protein Engineering
- Subjects
education.field_of_study ,Materials science ,Polymers and Plastics ,Small-angle X-ray scattering ,Process Chemistry and Technology ,Organic Chemistry ,Population ,photocycloaddition ,anthracene ,block copolymer ,thermoplastic elastomer ,Elastomer ,Micelle ,Dynamic light scattering ,Chemical engineering ,Self-healing hydrogels ,micelle ,Copolymer ,physically cross-linked networks ,Thermoplastic elastomer ,hydrogel ,education - Abstract
Soft, conformally shaped thermoplastic elastomer (TPE) hydrogels producible from a moldable precursor material are desirable in many biomedical, surgical, and pharmaceutical applications. An innovative class of hydrogel networks was developed by employing photocurable, moldable solutions of melt-assembled spherical micelles formed from ω-anthracenylpolystyrene-b-poly(ethylene oxide) diblock copolymer. Photoinduced [4 + 4] cycloaddition (λ = 365 nm) of terminal anthracene groups populating the hydrophilic corona of each micelle was used to produce polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymer tethers or network strands among adjacent micelles. Structural uniformity in the micelle population was confirmed by small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS). Homogeneous dispersal of the assembled micelle building blocks in water resulted in spreadable or moldable photoactive micelle solutions, studied for their stability in solution and ability to rapidly form elastomeric hydrogels once irradiated. Once in molds, these solutions of varied concentration were irradiated to form soft TPE hydrogels with dynamic shear modulus controllable with irradiation time (triblock copolymer content), exhibiting prescribed shape consistent with high-fidelity conformal fill.
- Published
- 2020