1. Surface Tailoring-Modulated Bifunctional Oxygen Electrocatalysis with CoP for Rechargeable Zn-Air Battery and Water Splitting.
- Author
-
Kumar MM, Aparna C, Nayak AK, Waghmare UV, Pradhan D, and Raj CR
- Abstract
The transition metal phosphide (TMP)-based functional electrocatalysts are very promising for the development of electrochemical energy conversion and storage devices including rechargeable metal-air batteries and water electrolyzer. Tuning the electrocatalytic activity of TMPs is one of the vital steps to achieve the desired performance of these energy devices. Herein, we demonstrate the modulation of the bifunctional oxygen electrocatalytic activity of nitrogen-doped carbon-encapsulated CoP (CoP@NC) nanostructures by surface tailoring with ultralow amount (0.56 atomic %) of Ru nanoparticles (2.5 nm). The CoP at the core and the Ru nanoparticles on the shell have a facile charge transfer interaction with the encapsulating NC. The strong coupling of Ru with CoP@NC boosts the electrocatalytic performance toward oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER) reactions. The surface-tailored catalyst requires only 35 mV to deliver the benchmark current density of 10 mA·cm
-2 for HER. A small potential gap of 620 mV between ORR and OER is achieved, making the catalyst highly suitable for the development of rechargeable zinc-air batteries (ZABs). The homemade ZAB delivers a specific capacity of 780 mA·hgZn -1 and peak power density of 175 mW·cm-2 with a very small voltaic efficiency loss (1.1%) after 300 cycles. The two-electrode water splitting cell (CoP@NC-Ru||CoP@NC-Ru) delivers remarkably low cell voltage of 1.47 V at the benchmark current density. Stable current density of 25 mA·cm-2 for 25 h without any significant change is achieved. Theoretical studies support the charge transfer interaction-induced enhanced electrocatalytic activity of the surface-tailored nanostructure.- Published
- 2024
- Full Text
- View/download PDF