1. A Highly Robust, Multifunctional, and Breathable Bicomponent Fibers Thermoelectric Fabric for Dual-Mode Sensing.
- Author
-
Zhu S, Tian G, He X, Shi Y, Liu WD, Li Z, Wang Y, Li J, Shi Y, Song Y, and Wang L
- Subjects
- Humans, Polystyrenes chemistry, Polyethylene Terephthalates chemistry, Thiophenes, Wearable Electronic Devices, Nanotubes, Carbon chemistry, Textiles
- Abstract
Wearable thermoelectric (TE) materials are seen as excellent candidates for flexible electronics because of their unique self-powered properties, multistimulus sensing and human waste heat conversion. However, currently reported flexible TE materials still face challenges such as poor durability, uncomfortable wearing and sensing signals crosstalking each other. Herein, this study describes a hot-air cross-linking method for the preparation of multifunctional TE fabrics with enhanced durability. Poly(ethylene terephthalate) (PET) fibers with core and sheath structures having different melting points were selected as flexible substrates. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes (SWCNTs) were embedded stably on the surface of the sheath layer in the presence of heat treatment. The fiber-welded structure created by thermal cross-linking improves the durability of TE fabrics, including consistent mechanical and electrical properties after a 6 h wash test and 6000 compression cycles. The unique fiber structure of TE fabrics ensures excellent breathability (313.7 mm s
-1 at 200 Pa), which meets the breathability requirements for human wear. In addition, the fiber-prepared sensors have excellent compressive strain response (20 ms response time and 30 ms recovery time) and precise temperature discrimination (0.17 K minimum discrimination temperature) for accurate real-time monitoring of the sensed signals. Thus, the TE fabrics can be used for human motion recognition, including pulse monitoring, sign language expression, and motions in joint areas. Moreover, the fabricated wearable TE device is connected to a Bluetooth module for wireless transmission, which can be used for mechanical and temperature sensing of the robot arm without signals crosstalking. This new durable TE fabric paves the way for the next generation of smart wearable technology.- Published
- 2024
- Full Text
- View/download PDF