1. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery.
- Author
-
Zhang K, Liu Z, Khan NA, Ma Y, Xie Z, Xu J, Jiang T, Liu H, Zhu Z, Liu S, Wang W, Meng Y, Peng Q, Zheng X, Wang M, and Chen W
- Abstract
Rechargeable hydrogen gas batteries, driven by hydrogen evolution and oxidation reactions (HER/HOR), are emerging grid-scale energy storage technologies owing to their low cost and superb cycle life. However, compared with aqueous electrolytes, the HER/HOR activities in nonaqueous electrolytes have rarely been studied. Here, for the first time, we develop a nonaqueous proton electrolyte (NAPE) for a high-performance hydrogen gas-proton battery for all-climate energy storage applications. The advanced nonaqueous hydrogen gas-proton battery (NAHPB) assembled with a representative V
2 (PO4 )3 cathode and H2 anode in a NAPE exhibits a high discharge capacity of 165 mAh g-1 at 1 C at room temperature. It also efficiently operates under all-climate conditions (from -30 to +70 °C) with an excellent electrochemical performance. Our findings offer a new direction for designing nonaqueous proton batteries in a wide temperature range.- Published
- 2024
- Full Text
- View/download PDF