1. Comparative Kidney Uptake of Nanobody-Based PET Tracers Labeled with Various Fluorine-18-Labeled Prosthetic Groups.
- Author
-
Olkowski CP, Basuli F, Fernandes B, Ghaemi B, Shi J, Zhang HH, Farber JM, Escorcia FE, Choyke PL, and Jacobson O
- Abstract
Nanobodies, or single-domain antibody fragments, are promising candidates for molecular imaging due to their small size, rapid tissue penetration, and high target specificity. However, a significant challenge in their use is high renal uptake and retention, which can limit the therapeutic efficacy and complicate image interpretation. This study compares five different fluorine-18-labeled prosthetic groups for nanobodies, aiming to optimize pharmacokinetics and minimize kidney retention while maintaining tumor targeting. Using an epidermal growth factor receptor (EGFR) targeting nanobody as a model, two labeling approaches were evaluated; direct labeling of RESCA (with and without polyethylene glycol (PEG))-conjugated nanobody using Al[
18 F]F and indirect labeling using ([18 F]F-fluoropyridine ([18 F]F-FPy)-based prosthetic groups (site-specific and nonsite-specific). Labeled nanobodies were characterized in vitro for binding affinity and cell uptake with in vivo behavior assessed in EGFR + A431 tumor-bearing mice using PET imaging and biodistribution studies. Labeling with Al[18 F]F showed high renal retention, which was partially mitigated by PEGylation. However, PEGylation also led to a decreased tumor uptake, particularly with longer PEG chains. Labeling using [18 F]F-FPy prosthetic groups exhibited the most favorable pharmacokinetics, with rapid renal clearance and minimal kidney retention while maintaining high tumor uptake. These constructs showed excellent tumor-to-background contrast as early as 1 h postinjection. The study confirms that the selection of the prosthetic group significantly impacts the in vivo behavior of nanobodies, particularly regarding kidney accumulation. [18 F]F-FPy-based prosthetic groups show the most promising results, with high tumor and minimal kidney uptake. Robust production of [18 F]F-FPy on Sep-Pak is adaptable to clinical translation. Moreover, the potential substitution of18 F with therapeutic radioisotopes such as131 I or211 At could expand the application of these nanobodies from diagnostics to targeted radionuclide therapy while maintaining a low kidney exposure. These findings have important implications for optimizing nanobody-based radiopharmaceuticals for molecular imaging and targeted radionuclide therapy.- Published
- 2025
- Full Text
- View/download PDF