21 results on '"Itri R"'
Search Results
2. Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation.
- Author
-
de Souza, R. M., Siani, P., Schmidt, T. F., Itri, R., and Dias, L. G.
- Published
- 2017
- Full Text
- View/download PDF
3. Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity.
- Author
-
Scanavachi G, Coutinho A, Fedorov AA, Prieto M, Melo AM, and Itri R
- Subjects
- Fluorescence Polarization, Lipid Bilayers, Scattering, Small Angle, X-Ray Diffraction, Lipid Peroxides, Phosphatidylcholines
- Abstract
Lipid hydroperoxides are key mediators of diseases and cell death. In this work, the structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes, at both 23 and 37 °C, were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, SAXS reveals that the hydroperoxide group decreases the lipid bilayer bending rigidity. This alteration disfavors the bilayer stacking and increases the swelling in-between stacked bilayers. We further investigated the changes in the apolar/polar interface of hydroperoxide-containing membranes through time-resolved fluorescence/anisotropy experiments of the probe TMA-DPH and time-dependent fluorescence shifts of Laurdan. A shorter mean fluorescence lifetime for TMA-DPH was obtained in enriched POPC-OOH membranes, revealing a higher degree of hydration near the membrane interface. Moreover, a higher microviscosity near TMA-DPH and lower order are predicted for these oxidized membranes, at variance with the usual trend of variation of these two parameters. Finally, the complex relaxation process of Laurdan in pure POPC-OOH membranes also indicates a higher membrane hydration and viscosity in the close vicinity of the -OOH moiety. Altogether, our combined approach reveals that the hydroperoxide group promotes alterations in the membrane structure organization, namely, at the level of membrane order, viscosity, and bending rigidity.
- Published
- 2021
- Full Text
- View/download PDF
4. Lipid Hydroperoxidation Effect on the Dynamical Evolution of the Conductance Process in Bilayer Lipid Membranes: A Condition Toward Criticality.
- Author
-
Corvalán NA, Caviglia AF, Felsztyna I, Itri R, and Lascano R
- Abstract
Cell membranes are one of the main targets of oxidative processes mediated by reactive oxygen species (ROS). These chemical species interact with unsaturated fatty acids of membrane lipids, triggering an autocatalytic chain reaction, producing lipid hydroperoxides (LOOHs) as the first relatively stable product of the ROS-mediated lipid peroxidation (LPO) process. Numerous biophysical and computational studies have been carried out to elucidate the LPO impact on the structure and organization of lipid membranes. However, although LOOHs are the major primary product of LPO of polyunsaturated fatty acids (PUFAs), to the best of our knowledge, there is no experimental evidence on the effects of the accumulation of these LPO byproducts on the electrical properties and the underlying dynamics of lipid membranes. In this work, bilayer lipid membranes (BLMs) containing 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocoline (POPC) with increasing hydroperoxidized POPC (POPC-OOH) molar proportions (BLM
PC/PC-OOH ) are used as model membranes to investigate the effect of LOOH-mediated LPO propagation on the electrical behavior of lipid bilayers. Voltage-induced ion current signals are analyzed by applying the fractal method of power spectrum density (PSD) analysis. We experimentally prove that, when certain LOOH concentration and energy threshold are overcome, oxidized membranes evolve toward a critical state characterized by the emergence of non-linear electrical behavior dynamics and the pore-type metastable structures formation. PSD analysis shows that temporal dynamics exhibiting "white" noise (non-time correlations) reflects a linear relationship between the input and output signals, while long-term correlations (β > 0.5) begin to be observed closely to the transition (critical point) from linear (Ohmic) to nonlinear (non-Ohmic) behavior. The generation of lipid pores appears to arise as an optimized energy dissipation mechanism based on the system's ability to self-organize and generate ordered structures capable of dissipating energy gradients more efficiently under stressful oxidative conditions.- Published
- 2020
- Full Text
- View/download PDF
5. Photo-Oxidation of Unilamellar Vesicles by a Lipophilic Pterin: Deciphering Biomembrane Photodamage.
- Author
-
Vignoni M, Urrutia MN, Junqueira HC, Greer A, Reis A, Baptista MS, Itri R, and Thomas AH
- Subjects
- Hydrophobic and Hydrophilic Interactions, Molecular Structure, Oxidation-Reduction, Photochemical Processes, Membrane Lipids chemistry, Pterins chemistry, Ultraviolet Rays, Unilamellar Liposomes chemistry
- Abstract
Pterins are natural products that can photosensitize the oxidation of DNA, proteins, and phospholipids. Recently, a new series of decyl-chain (i.e., lipophilic) pterins were synthesized and their photophysical properties were investigated. These decyl-pterins led to efficient intercalation in large unilamellar vesicles and produced, under UVA irradiation, singlet molecular oxygen, a highly oxidative species that react with polyunsaturated fatty acids (PUFAs) to form hydroperoxides. Here, we demonstrate that the association of 4-(decyloxy)pteridin-2-amine ( O-decyl-Ptr) to lipid membranes is key to its ability to trigger phospholipid oxidation in unilamellar vesicles of phosphatidylcholine rich in PUFAs used as model biomembranes. Our results show that O-decyl-Ptr is at least 1 order of magnitude more efficient photosensitizer of lipids than pterin (Ptr), the unsubstituted derivative of the pterin family, which is more hydrophilic and freely passes across lipid membranes. Lipid peroxidation photosensitized by O-decyl-Ptr was detected by the formation of conjugated dienes and oxidized lipids, such as hydroxy and hydroperoxide derivatives. These primary products undergo a rapid conversion into short-chain secondary products by cleavage of the fatty-acid chains, some of which are due to subsequent photosensitized reactions. As a consequence, a fast increase in membrane permeability is observed. Therefore, lipid oxidation induced by O-decyl-Ptr could promote cell photodamage due to the biomembrane integrity loss, which in turn may trigger cell death.
- Published
- 2018
- Full Text
- View/download PDF
6. Cytochrome-c Affects the Monoolein Polymorphism: Consequences for Stability and Loading Efficiency of Drug Delivery Systems.
- Author
-
Mazzoni S, Barbosa LR, Funari SS, Itri R, and Mariani P
- Subjects
- Crystallization, Crystallography, X-Ray, Drug Compounding, Models, Molecular, Phase Transition, Solutions, Temperature, Water chemistry, Cytochromes c chemistry, Drug Delivery Systems, Glycerides chemistry
- Abstract
Structural properties and polymorphism of monoolein (MO) in aqueous solutions have been studied for a long time, and the final picture can be considered definite. The presence of bicontinuous phases and the ability to encapsulate hydrophilic, hydrophobic, and amphiphilic compounds, together with the capability to protect and slowly release the entrapped molecules, designated MO phases as good matrices for the sustained release of drugs. Because phase stability, loading efficiency, and bioavailability are strongly correlated, the interplay between MO phases and entrapped compounds is worthy of investigation. In this paper, low angle X-ray diffraction has been used to describe the effects of a model protein (the cytochrome-c) on the monoolein cubic phases as a function of both incubation time and protein concentration in the soaking solutions. Results show that the MO polymorphism is strongly modified by the protein, underlying the very large affinity of the cytochrome-c toward monoolein. However, the different phases have a different sensibility to cytochrome-c, as phase transitions occur when the protein amount exceeds some different critical values, probably related to the structure characteristics (2 cytochrome-c per unit cell at the Pn3m to Im3m cubic phase transition and 10-20 cytochrome-c per unit cell at the Im3m to P4332 cubic phase transition). Moreover, although equilibration times resulted to be quite long (more than 10 days), the fraction of cytochrome-c incorporated into the MO phases is very high (up to 20% v/v inside the P4332 cubic phase). Such results are intriguing: even if they may be specific to the cytochrome-c/MO case, the need of assessing the structural characteristics of lipid matrices before their use as drug delivery systems is evident.
- Published
- 2016
- Full Text
- View/download PDF
7. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains.
- Author
-
Pedrera L, Gomide AB, Sánchez RE, Ros U, Wilke N, Pazos F, Lanio ME, Itri R, Fanani ML, and Alvarez C
- Subjects
- Organic Chemicals chemistry, Unilamellar Liposomes, Sterols chemistry
- Abstract
Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT. As for actinoporins, it has been proposed that the presence of cholesterol (Chol) and the coexistence of lipid phases increase binding to the target membrane and pore-forming ability. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, and the presence of lipid domains) on the activity of actinoporins or which regions of the membrane are the most favorable for protein insertion, oligomerization, and eventually pore formation. To gain insight into the role of membrane properties on the functional activity of St I, we studied its binding to monolayers and vesicles of phosphatidylcholine (PC), sphingomyelin (SM), and sterols inducing (ergosterol -Erg and cholesterol -Chol) or not (cholestenone - Cln) membrane phase segregation in liquid ordered (Lo) and liquid disordered (Ld) domains. This study revealed that St I binds and permeabilizes with higher efficiency sterol-containing membranes independently of their ability to form domains. We discuss the results in terms of the relevance of different membrane properties for the actinoporins mechanism of action, namely, molecular heterogeneity, specially potentiated in membranes with sterols inducers of phase separation (Chol or Erg) or Cln, a sterol noninducer of phase separation but with a high propensity to induce nonlamellar phase. The role of the Ld phase is pointed out as the most suitable platform for pore formation. In this regard, such regions in Chol-containing membranes seem to be the most favored due to its increased fluidity; this property promotes toxin insertion, diffusion, and oligomerization leading to pore formation.
- Published
- 2015
- Full Text
- View/download PDF
8. Binding of methylene blue onto Langmuir monolayers representing cell membranes may explain its efficiency as photosensitizer in photodynamic therapy.
- Author
-
Schmidt TF, Caseli L, Oliveira ON Jr, and Itri R
- Subjects
- Cardiolipins metabolism, Methylene Blue chemistry, Phosphatidylcholines metabolism, Photosensitizing Agents chemistry, Static Electricity, Cell Membrane chemistry, Cell Membrane metabolism, Methylene Blue metabolism, Photochemotherapy, Photosensitizing Agents metabolism
- Abstract
We provide evidence for the electrostatic interactions between the cationic photosensitizer methylene blue (MB) and cell membrane models represented by neat and mixed Langmuir monolayers of dioleylphosphatidylcholine (DOPC) and 1,1',2,2'-tetraoleoylcardiolipin (CL). From surface pressure measurements, MB was found to adsorb strongly and expand CL-containing monolayers, while it caused an apparent decreasing in molecular area on neat DOPC monolayer. The binding site of MB could be inferred from data with the surface-specific polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) technique, where changes induced by MB were observed in the vibrational modes of the phosphate groups of both CL and DOPC. The incorporation of MB also affected the carbonyl groups and the packing of the alkyl chains, thus indicating that MB binding site favors singlet oxygen generation close to the double bonds in the alkyl chains, an important requirement for photodynamic efficiency. Significantly, the data presented here demonstrate that MB may act in membranes composed by PCs, such as mammalian plasma membranes, and in those containing CL, as in bacterial and inner mitochondrial membranes.
- Published
- 2015
- Full Text
- View/download PDF
9. How does the ethoxylated grafting of polyelectrolytes affect the self-assembly of polyanion-cationic surfactant complex salts?
- Author
-
Percebom AM, Barbosa LR, Itri R, and Loh W
- Abstract
A cationic surfactant and different anionic copolymers randomly grafted with side chains of ethylene oxide were used to prepare stoichiometric complex salts. Variations in the length or proportion of side chains were shown to be responsible for affecting the surfactant phase behavior in water, resulting in the observation of a number of structures characterized by small angle X-ray scattering measurements, including a hierarchical micellar system and different liquid-crystalline phases. Additionally, although aqueous mixtures of stoichiometric complex salts usually phase separate, the presence of a sufficiently high weight fraction of ethylene oxide side chains can enhance the solubility of the complex salt aggregates in water over a wide range of concentration. Moreover, a dispersion of an isotropic concentrated solution of complex salts is formed at higher temperatures in a reversible process. In summary, this study proves the importance of the polyion structure for tuning the properties of systems of complex salts.
- Published
- 2014
- Full Text
- View/download PDF
10. Interaction of the rattlesnake toxin crotamine with model membranes.
- Author
-
Costa BA, Sanches L, Gomide AB, Bizerra F, Dal Mas C, Oliveira EB, Perez KR, Itri R, Oguiura N, and Hayashi MA
- Subjects
- Amino Acid Sequence, Animals, Antifungal Agents pharmacology, Crotalid Venoms metabolism, Crotalid Venoms toxicity, Fungi drug effects, Gram-Negative Bacteria drug effects, Gram-Positive Bacteria drug effects, Microscopy, Molecular Sequence Data, Unilamellar Liposomes metabolism, Crotalid Venoms chemistry, Crotalus metabolism, Unilamellar Liposomes chemistry
- Abstract
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine's selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.
- Published
- 2014
- Full Text
- View/download PDF
11. Thermodynamic and structural characterization of zwitterionic micelles of the membrane protein solubilizing amidosulfobetaine surfactants ASB-14 and ASB-16.
- Author
-
D'Andrea MG, Domingues CC, Malheiros SV, Neto FG, Barbosa LR, Itri R, Almeida FC, de Paula E, and Bianconi ML
- Subjects
- Betaine chemistry, Calorimetry, Magnetic Resonance Spectroscopy, Micelles, Models, Molecular, Molecular Structure, Solubility, Surface Tension, Betaine analogs & derivatives, Membrane Proteins chemistry, Surface-Active Agents chemistry, Thermodynamics
- Abstract
Surface tension and isothermal titration calorimetry (ITC) were used to determine the critical micelle concentration (cmc) of the zwitterionic amidosulfobetaine surfactants ASB-14 and ASB-16 (linear-alkylamidopropyldimethylammoniopropanosulfonates) at 25 °C. The cmc and the heat of micellization were determined from 15 to 75 °C by ITC for both surfactants. The increase in temperature caused significant changes in the enthalpy and in the entropy of micellization, with small changes in the standard Gibbs energy (ΔG(mic)), which is consistent to an enthalpy−entropy compensation with a compensatory temperature of 311 K (ASB-14) and 314 K (ASB-16). In the studied temperature range, the heat capacity of micellization (ΔC(p)(mic)) was essentially constant. The experimental ΔC(p)(mic) was lower than that expected if only hydrophobic interactions were considered, suggesting that polar interactions at the head groups are of significant importance in the thermodynamics of micelle formation by these surfactants. Indeed, a NMR NOESY spectrum showed NOEs that are improbable to occur within the same monomer, resulting from interactions at the polar head groups involving more than one monomer. The ITC and NMR results indicate a tilt in the polar headgroup favoring the polar interactions. We have also observed COSY correlations typical of dipolar interactions that could be recovered with the partial alignment of the molecule in solution, which results in an anisotropic tumbling. The anisotropy suggested an ellipsoidal shape of the micelles, which results in a positive magnetic susceptibility, and ultimately in orientation induced by the magnetic field. Such an ellipsoidal shape was confirmed from results obtained by SAXS experiments that revealed aggregation numbers of 108 and 168 for ASB-14 and ASB-16 micelles, respectively. This study characterizes an interesting micelle system that can be used in the study of membrane proteins by solution NMR spectroscopy., (© 2011 American Chemical Society)
- Published
- 2011
- Full Text
- View/download PDF
12. Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs.
- Author
-
Sudbrack TP, Archilha NL, Itri R, and Riske KA
- Subjects
- Microscopy, Fluorescence, Microscopy, Phase-Contrast, Oleic Acid chemistry, Palmitic Acid chemistry, Phosphatidylcholines chemistry, Solubility, Surface Properties, Lipid Bilayers chemistry, Octoxynol chemistry, Sodium Dodecyl Sulfate chemistry, Unilamellar Liposomes chemistry
- Abstract
The solubilization of lipid bilayers by detergents was studied with optical microscopy of giant unilamellar vesicles (GUVs) composed of palmitoyl oleoyl phosphatidylcholine (POPC). A solution of the detergents Triton X-100 (TX-100) and sodium dodecyl sulfate (SDS) was injected with a micropipette close to single GUVs. The solubilization process was observed with phase contrast and fluorescence microscopy and found to be dependent on the detergent nature. In the presence of TX-100, GUVs initially showed an increase in their surface area, due to insertion of TX-100 with rapid equilibration between the two leaflets of the bilayer. Then, above a solubility threshold, several holes opened, rendering the bilayer a lace fabric appearance, and the bilayer gradually vanished. On the other hand, injection of SDS caused initially an increase in the membrane spontaneous curvature, which is mainly associated with incorporation of SDS in the outer layer only. This created a stress in the membrane, which caused either opening of transient macropores with substantial decrease in vesicle size or complete vesicle bursting. In another experimental setup, the extent of solubilization/destruction of a collection of GUVs was measured as a function of either TX-100 or SDS concentration.
- Published
- 2011
- Full Text
- View/download PDF
13. Unraveling the Na,K-ATPase alpha(4) subunit assembling induced by large amounts of C(12)E(8) by means of small-angle X-ray scattering.
- Author
-
Barbosa LR, Rigos CF, Yoneda JS, Itri R, and Ciancaglini P
- Subjects
- Animals, Kidney Medulla enzymology, Micelles, Protein Subunits chemistry, Rabbits, Scattering, Small Angle, Sodium-Potassium-Exchanging ATPase metabolism, X-Ray Diffraction, Detergents chemistry, Polyethylene Glycols chemistry, Sodium-Potassium-Exchanging ATPase chemistry
- Abstract
In the current work, we studied the effect of the nonionic detergent dodecyloctaethyleneglycol, C(12)E(8), on the structure and oligomeric form of the Na,K-ATPase membrane enzyme (sodium-potassium pump) in aqueous suspension, by means of small-angle X-ray scattering (SAXS). Samples composed of 2 mg/mL of Na,K-ATPase, extracted from rabbit kidney medulla, in the presence of a small amount of C(12)E(8) (0.005 mg/mL) and in larger concentrations ranging from 2.7 to 27 mg/mL did not present catalytic activity. Under this condition, an oligomerization of the alpha subunits is expected. SAXS data were analyzed by means of a global fitting procedure supposing that the scattering is due to two independent contributions: one coming from the enzyme and the other one from C(12)E(8) micelles. In the small detergent content (0.005 mg/mL), the SAXS results evidenced that Na,K-ATPase is associated into aggregates larger than (alphabeta)(2) form. When 2.7 mg/mL of C(12)E(8) is added, the data analysis revealed the presence of alpha(4) aggregates in the solution and some free micelles. Increasing the detergent amount up to 27 mg/mL does not disturb the alpha(4) aggregate: just more micelles of the same size and shape are proportionally formed in solution. We believe that our results shed light on a better understanding of how nonionic detergents induce subunit dissociation and reassembling to minimize the exposure of hydrophobic residues to the aqueous solvent.
- Published
- 2010
- Full Text
- View/download PDF
14. Self-assembling of phenothiazine compounds investigated by small-angle X-ray scattering and electron paramagnetic resonance spectroscopy.
- Author
-
Barbosa LR, Itri R, Caetano W, Neto Dde S, and Tabak M
- Subjects
- Electron Spin Resonance Spectroscopy, Molecular Structure, Scattering, Small Angle, Solutions, X-Ray Diffraction, Antipsychotic Agents chemistry, Chlorpromazine chemistry, Phenothiazines chemistry, Trifluoperazine chemistry
- Abstract
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 A(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
- Published
- 2008
- Full Text
- View/download PDF
15. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.
- Author
-
Tada DB, Vono LL, Duarte EL, Itri R, Kiyohara PK, Baptista MS, and Rossi LM
- Subjects
- Magnetic Resonance Imaging, Magnetics, Methylene Blue therapeutic use, Microscopy, Electron, Transmission, Nanoparticles therapeutic use, Nanoparticles ultrastructure, Photochemotherapy, Photosensitizing Agents therapeutic use, Silicon Dioxide therapeutic use, Singlet Oxygen chemistry, Contrast Media chemistry, Ferrosoferric Oxide chemistry, Methylene Blue chemistry, Nanoparticles chemistry, Photosensitizing Agents chemistry, Silicon Dioxide chemistry
- Abstract
We present the preparation and characterization of methylene blue-containing silica-coated magnetic particles. The entrapment of methylene blue (MB), a photodynamic therapy drug under study in our group, in the silica matrix took place during the growth of a silica layer over a magnetic core composed of magnetite nanoparticles. The resulting material was characterized by transmission electron microscopy (TEM), light scattering, and X-ray diffraction. It is composed of approximately 30 nm silica spheres containing magnetic particles of 11 +/- 2 nm and methylene blue entrapped in the silica matrix. The immobilized drug can generate singlet oxygen, which was detected by its characteristic phosphorescence decay curve in the near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen was determined to be 52 micros (in acetonitrile) and 3 micros (in water), with both values being in good agreement with those in the literature. The release of singlet oxygen (etaDelta) was affected by the encapsulation of MB in the silica matrix, which caused a reduction to 6% of the quantum yield of MB free in solution. The magnetization curve confirmed the superparamagnetic behavior with a reduced saturation magnetization in respect to uncoated magnetic nanoparticles, which is consistent with the presence of a diamagnetic component over the magnetite surface. The result is a single particle platform that combines therapy (photosensitizer) and diagnostic (MRI contrast agent) possibilities at the same time, as well as drug targeting.
- Published
- 2007
- Full Text
- View/download PDF
16. Photo-induced destruction of giant vesicles in methylene blue solutions.
- Author
-
Caetano W, Haddad PS, Itri R, Severino D, Vieira VC, Baptista MS, Schröder AP, and Marques CM
- Subjects
- Methylene Blue, Phospholipids, Solutions, Lipid Bilayers radiation effects, Liposomes radiation effects, Photochemistry
- Abstract
We study the photodecomposition of phospholipid bilayers in aqueous solutions of methylene blue. Observation of giant unilamellar vesicles under an optical microscope reveals a consistent pattern of membrane disruption as a function of methylene blue concentration and photon density for different substrates supporting the vesicles.
- Published
- 2007
- Full Text
- View/download PDF
17. Ion pairs of crystal violet in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles.
- Author
-
Oliveira CS, Bastos EL, Duarte EL, Itri R, and Baptista MS
- Subjects
- Magnetic Resonance Spectroscopy, Models, Molecular, Molecular Conformation, Molecular Structure, X-Ray Diffraction, Gentian Violet chemistry, Ions chemistry, Micelles, Succinates chemistry
- Abstract
The interfacial localization and the ion pair formation of the positively charged dye crystal violet (CV) in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles (AOT RMs) were studied by several structural and spectroscopic techniques and by quantum chemical calculations. The size and shape of the AOT RMs in the presence of CV were investigated by small-angle X-ray scattering, showing that CV does not significantly change the RM structure. CV localization as a function of the water to surfactant molar ratio (w(0)) was characterized by H(1) and (13)C NMR, indicating the close proximity of CV to the sulfosuccinate group of AOT at small and large w(0) values. These results were confirmed by calculation of magnetic shielding constants using the gauge-independent atomic orbital method with the HF/6-31G(d) basis set. Two different types of ion pairs between AOT and CV, i.e., contact ion pair (CIPs) and solvent-separated ion pair (SSIPs), were characterized by UV-vis spectroscopy and quantum chemical calculations using the semiempirical ZINDO-CI method. In nonpolar isotropic solvents CIPs are formed with an association constant (K(ASSOC)) of 2 x 10(4) mol(-1) L in isooctane and 750 mol(-1) L in chloroform. In AOT RMs at low w(0), CV-AOT CIPs are also formed. By increasing w(0), there is a sharp decrease in the CIP association free energy, and SSIPs are formed. (CV(+))(H(2)O)(AOT(-)) SSIPs are stable in the AOT RM up to the largest w(0) tested (w(0) = 33).
- Published
- 2006
- Full Text
- View/download PDF
18. Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: Small angle X-ray scattering, electronic absorption spectroscopy, and theoretical calculations.
- Author
-
Barbosa LR, Caetano W, Itri R, Homem-de-Mello P, Santiago PS, and Tabak M
- Subjects
- Models, Molecular, Scattering, Radiation, Lysophosphatidylcholines chemistry, Micelles, Phenothiazines chemistry, Spectrum Analysis methods
- Abstract
In this work, small-angle X-ray scattering (SAXS) studies on the interaction of the phenothiazine cationic compounds trifluoperazine (TFP, 2-10 mM) and chlorpromazine (CPZ, 2-10 mM) with micelles of the zwitterionic surfactant L-alpha-lysophosphatidylcholine (LPC, 30 mM), at pHs 4.0 and 7.0, are reported. The SAXS results demonstrate that, upon addition of both phenothiazines, the LPC micelle of prolate ellipsoidal shape changes into a cylindrically shaped micelle, increasing its axial ratio from 1.6 +/- 0.1 (in the absence of drug) to 2.5 +/- 0.1 (for 5 and 10 mM of phenothiazine). Such an effect is accompanied by a shrinking of the paraffinic shortest semiaxis from 22.5 +/- 0.3 to 20.0 +/- 0.5 A. Besides, a significant increase in polar shell electron density from 0.39(1) to 0.45(1) e/A3 is observed, consistent with cylinder-like aggregate geometry. Moreover, an increase of the phenothiazine concentration induces the appearance of a repulsive interference function over the SAXS curve of zwitterionic micelles, which is typical of interaction between surface-charged micelles. Such a finding provides evidence that the positively charged phenothiazine molecule must be accommodated near the hydrophobic/hydrophilic inner micellar interface in such a way that a net surface charge is altered with respect to the original overall neutral zwitterionic micelle. Such phenothiazine location is favored by both electrostatic and hydrophobic contributions, giving rise to binding constant values, obtained from electronic absorption results, that are quite larger compared to their binding to another zwitterionic surfactant, 3-(N-hexadecyl-N,N-dimethylammonio)propanesulfonate (HPS) (Caetano, W., et al. J. Colloid Int. Sci. 2003, 260, 414-422). Comparisons are made by means of theoretical calculations of the surfactant headgroup dipole moments for monomers of LPC and HPS. The theoretical results show that the dipole moment in LPC is almost perpendicular to the methylene chain, while a significant contribution along the methylene chain occurs for HPS. Besides, evidence is presented for extensive delocalization of the charges in the headgroups, which could be also relevant for the binding of the drugs.
- Published
- 2006
- Full Text
- View/download PDF
19. Photochemically generated stable cation radical of phenothiazine aggregates in mildly acid buffered solutions.
- Author
-
Rodrigues T, dos Santos CG, Riposati A, Barbosa LR, Di Mascio P, Itri R, Baptista MS, Nascimento OR, and Nantes IL
- Subjects
- Acids, Cations, Electron Spin Resonance Spectroscopy, Free Radicals, Models, Molecular, Photochemistry, Scattering, Radiation, Solutions, Phenothiazines chemistry
- Abstract
This work characterizes, for the first time, the photochemical behavior of the antipsychotic drugs thioridazine (TR), trifluoperazine (TFP), and fluphenazine (FP) influenced by the aggregation state of the molecules. Samples of monomeric and aggregated forms of phenothiazines were submitted to 20 min of irradiation at 254 nm for intervals of 1, 5, 10, 15, 20, or 25 days. In high phenothiazine concentrations, the irradiation led to the appearance of absorbance bands in the visible region peaking at 633 nm for TR and 509 nm for FP and TFP. In the dark, at room temperature and at 4 degrees C, these bands disappeared, after approximately 15 and approximately 60 min, respectively, but reappeared after a new irradiation session. These visible bands were assigned to stable cation radicals that were characterized by direct EPR measurements and by flash photolysis. Photogenerated stable cation radicals in the phenothiazine aggregates at room temperature are formed probably due to the stacking of the thiazine phenyl moieties. For the monomeric forms of phenothiazines, the spectral changes observed during the irradiation suggested the formation of sulfoxide and hydroxylated derivates. Oxidized derivates were detected by mass spectrometry of the aggregated forms of phenothiazines (>100 microM) only in the samples irradiated for more than 20 days. In contrast, monomeric phenothiazines were totally converted to the oxidized forms after 20 min of irradiation. Surface tension measurements of phenothiazines revealed that, in concentrations above 100 microM, the drugs formed aggregates. In the case of TR, small-angle X-ray scattering measurements indicated that this compound forms large lamellar-like aggregates in aqueous solutions.
- Published
- 2006
- Full Text
- View/download PDF
20. Porphyrin effects on zwitterionic HPS micelles as investigated by small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR).
- Author
-
Gandini SC, Itri R, de Sousa Neto D, and Tabak M
- Subjects
- Electron Spin Resonance Spectroscopy methods, Hydrogen-Ion Concentration, Micelles, Molecular Structure, Scattering, Small Angle, Sensitivity and Specificity, X-Ray Diffraction, Porphyrins chemistry, Quaternary Ammonium Compounds chemistry, Surface-Active Agents chemistry
- Abstract
In this work, small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) studies on the interaction of three anionic mesotetrakis (4-sulfonatophenyl) porphyrins, TPPS4, FeTPPS4, and ZnTPPS4, at concentrations in the 2-10 mM range, with micelles of the zwitterionic surfactant 3-(N-hexadecyl-N,N-dimethylammonium) propane sulfonate (HPS, 30 mM) at pH 4.0 and 9.0 are reported. The SAXS results demonstrate that, upon addition of all species of porphyrins, the HPS micelle of prolate shape reduces its axial ratio from 1.8 +/- 0.2 (in the absence of porphyrin) to 1.5 +/- 0.1. Such an effect is accompanied by a shrinking of the paraffinic shortest semiaxis from 22.5 +/- 0.5 A to 18.0 +/- 0.2 A. This shows that the micellar hydrophobic core is affected by porphyrin incorporation, independent of the type of porphyrin and pH. Concurrently, EPR results demonstrate an increase in the micellar packing as noticed from the increase in motional restriction for both nitroxides. Furthermore, increase of the porphyrin concentration induces the appearance of a repulsive interference function over the SAXS curve of zwitterionic micelles, which is typical of an interaction between surface-charged micelles. Such a finding gives strong evidence that the negatively charged porphyrin molecule must accommodate in the HPS micelle dipole layer close to the inner positive charges (near the hydrophobic core), inducing a surface charge (probably a negative one associated with the HPS sulfonate external groups) in the original zwitterionic (overall neutral) micelle. Such a porphyrin location is favored by both electrostatic and hydrophobic contributions, giving rise to binding constant values that are quite large compared to the binding of cationic drugs to HPS micelles (Caetano, W.; Barbosa, L. R. S.; Itri, R.; Tabak, M. J. Coll. Int. Sci. 2003, 260, 414).
- Published
- 2005
- Full Text
- View/download PDF
21. Surfactant--polymer aggregates formed by sodium dodecyl sulfate, poly(N-vinyl-2-pyrrolidone), and poly(ethylene glycol).
- Author
-
Romani AP, Gehlen MH, and Itri R
- Abstract
The interaction of sodium dodecyl sulfate (SDS) in aqueous solution with poly(N-vinyl-2-pyrrolidone) (M(w) = 55,000 g/mol) in the presence of poly(ethylene glycol) (M(w) = 8000 g/mol) is investigated by electrical conductivity, zeta potential measurements, viscosity measurements, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate that SDS-polymer interaction occurs at low surfactant concentration, and its critical aggregation concentration is fairly dependent on polymer composition. The polymer-supported micelles have average aggregation numbers dependent on surfactant concentration, are highly dissociated when compared with aqueous SDS micelles, and have zeta potentials that increase linearly with the fraction of PVP at constant SDS concentration. The analysis of the SAXS measurements indicated that the PVP/PEG/SDS system forms surface-charged aggregates of a cylindrical shape with an anisometry (length to cross-section dimension ratio) of about 3.0.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.